一种陶瓷型壳脱蜡方法和脱蜡装置

    公开(公告)号:CN109702146A

    公开(公告)日:2019-05-03

    申请号:CN201910184064.4

    申请日:2019-03-12

    Abstract: 本发明提供了一种陶瓷型壳脱蜡方法和脱蜡装置,属于陶瓷型壳成型技术领域。本发明在陶瓷型壳的蜡模上设置有贯穿蜡模中心的中空部分,用于放置加热体,所述中空部分的形状与所述加热体的形状相适应;将所述陶瓷型壳放置在加热体上,使所述加热体贯穿所述陶瓷型壳的蜡模中心,且所述加热体与所述中空部分的内壁不接触;将所述加热体升温至脱蜡温度,进行恒温脱蜡。本发明的脱蜡方法,在进行脱蜡时,加热体向外辐射传热,蜡料由陶瓷型壳中心向外逐渐熔化,熔化后的蜡液沿内壁快速向下流出,与传统的从外向内加热的脱蜡方式相比,有效避免了型壳表面蜡料熔化后不能及时流出,蜡液长时间受热膨胀而造成陶瓷型壳开裂的问题。

    大规格Ti2AlNb棒材及其锻造方法和应用

    公开(公告)号:CN112275984B

    公开(公告)日:2021-03-16

    申请号:CN202011560242.8

    申请日:2020-12-25

    Abstract: 本发明涉及锻造工艺技术领域,尤其是涉及一种大规格Ti2AlNb棒材及其锻造方法和应用。锻造方法包括如下步骤:沿第一方向对所述Ti2AlNb棒材进行变形量为30%~40%的镦粗,沿第二方向进行变形量为45%~55%的镦粗,沿第一方向进行变形量为30%~40%的镦粗;沿第三方向进行变形量为30%~40%的镦粗,沿第一方向进行变形量为45%~55%的镦粗,沿第三方向进行变形量为30%~40%的镦粗;第二方向进行变形量为30%~40%的镦粗,沿第三方向进行变形量为45%~55%的镦粗,沿第二方向进行变形量为30%~40%的镦粗。通过交替大变形量使棒材芯部变形充分,提高大规格棒材的锻透性和组织均匀性。

    一种陶瓷型壳脱蜡方法和脱蜡装置

    公开(公告)号:CN109702146B

    公开(公告)日:2020-01-10

    申请号:CN201910184064.4

    申请日:2019-03-12

    Abstract: 本发明提供了一种陶瓷型壳脱蜡方法和脱蜡装置,属于陶瓷型壳成型技术领域。本发明在陶瓷型壳的蜡模上设置有贯穿蜡模中心的中空部分,用于放置加热体,所述中空部分的形状与所述加热体的形状相适应;将所述陶瓷型壳放置在加热体上,使所述加热体贯穿所述陶瓷型壳的蜡模中心,且所述加热体与所述中空部分的内壁不接触;将所述加热体升温至脱蜡温度,进行恒温脱蜡。本发明的脱蜡方法,在进行脱蜡时,加热体向外辐射传热,蜡料由陶瓷型壳中心向外逐渐熔化,熔化后的蜡液沿内壁快速向下流出,与传统的从外向内加热的脱蜡方式相比,有效避免了型壳表面蜡料熔化后不能及时流出,蜡液长时间受热膨胀而造成陶瓷型壳开裂的问题。

    一种调控水冷坩埚浇注TiAl合金熔化过热度的方法

    公开(公告)号:CN109530669B

    公开(公告)日:2020-01-07

    申请号:CN201910025265.X

    申请日:2019-01-11

    Abstract: 本发明公开一种调控水冷坩埚浇注TiAl合金熔化过热度的方法,包括在水冷坩埚和铸型之间设置的中间包,中间包包括中间包主体、陶瓷托盘及感应加热线圈;水冷坩埚的出液口与中间包主体的顶端开口相对接,中间包主体的底端出液口处安装有陶瓷托盘,陶瓷托盘处设置有封口;连接电源的感应加热线圈对应设置在中间包主体的外侧。本发明的调控水冷坩埚浇注TiAl合金熔化过热度的方法,在不污染TiAl熔体和损失熔体热量的前提下,调控熔体过热度使后浇注的熔体过热度不低于先浇注的熔体,从而显著提高冒口对铸件的补缩能力,减少TiAl合金铸件缩孔缩松缺陷,改善TiAl的铸造成品率。

    一种保持铸造TiAl合金高温长时强度的方法

    公开(公告)号:CN109825786B

    公开(公告)日:2020-06-26

    申请号:CN201910159228.8

    申请日:2019-03-04

    Abstract: 本发明涉及金属材料技术领域,尤其涉及一种保持铸造TiAl合金高温长时强度的方法,本发明提供的一种保持铸造TiAl合金高温长时强度的方法,包括以下步骤:将铸造TiAl合金依次进行均匀化热处理、热等静压处理和去应力退火处理;所述铸造TiAl合金中C的原子百分含量为0.03~0.3%,所述去应力退火处理的温度为600~750℃。利用上述方法动态硬化型TiAl合金在700~850℃、250~300MPa的条件下蠕变加载150~250小时后,抗拉强度仅降低4.0~4.5%,屈服强度仅降低1.0~1.5%,室温塑性降低8~11%。

Patent Agency Ranking