-
公开(公告)号:CN109559302A
公开(公告)日:2019-04-02
申请号:CN201811403708.6
申请日:2018-11-23
Applicant: 北京市新技术应用研究所 , 北京信息科技大学
Abstract: 本发明涉及一种基于卷积神经网络的管道视频缺陷检测方法,对视频抽帧,训练多个CNN对每帧图像进行分类,统计每个CNN返回的结果,确定该帧的缺陷类型,以管道闭路电视视频为输入,将视频切分为连续图像帧,将每帧图像送入多个训练好的CNN中进行二分类,分类结果只包括含有某种特定缺陷和无缺陷。本发明显著提高了管道缺陷检测的准确率,为视频检测提供了一种可行方法,不仅可以提高管道缺陷的自动化检测效率,也可减轻工作人员的劳动强度,本方法检测准确率高且检测速度快,在管道视频缺陷检测中具有很大的应用价值,且取得了较为满意的结果,可作为管道缺陷检测工作者的技术参考,可以很好地满足实际应用的需要。
-
公开(公告)号:CN105335468A
公开(公告)日:2016-02-17
申请号:CN201510623640.2
申请日:2015-09-28
Applicant: 北京信息科技大学 , 北京市新技术应用研究所
IPC: G06F17/30
Abstract: 本发明涉及一种基于百度地图API的地理位置实体规范化方法,包括以下步骤:步骤1):利用百度地图API,对缺陷地理位置实体进行检索;步骤2):利用步骤1)的检索结果,构建缺陷地理位置实体的区域特征向量;步骤3):利用所述区域特征向量,对明确地理位置实体进行规范化;步骤4):利用所述明确地理位置实体,对歧义地理位置实体进行规范化;步骤5):利用等价地理位置实体,对零地理位置实体进行规范化。本发明以城市管理投诉文本为基础,利用地图API实现地理位置实体的规范化,结合城市管理投诉文本的特点、地理位置实体中存在的问题,对不完整的地理位置实体进行区域补全,从而解决了统计分析工作难以进行的局面。
-
公开(公告)号:CN105468791B
公开(公告)日:2019-11-15
申请号:CN201610001346.2
申请日:2016-01-05
Applicant: 北京信息科技大学 , 北京市新技术应用研究所
IPC: G06F16/953 , G06F16/29
Abstract: 本发明涉及一种基于互动问答社区‑百度知道的地理位置实体的完整性表达方法,包括以下步骤:步骤1):通过数据处理提取缺陷地理位置实体defectLoc;步骤2):对提取的defectLoc生成问题:“某defectLoc属于哪个区”,通过百度知道进行检索;步骤3):根据检索的结果提取特征,计算defectLoc属于各个区域的得分,并构建出defectLoc的所属区域特征向量;步骤4):利用规则对defectLoc进行完整化处理。本发明以微博城市投诉文本为基础,针对其中的地理位置实体表达不规范、非结构化的特点,使得工作人员很难进行统计分析工作,本发明提出一种基于百度知道的地理位置实体的完整性表达方法,对缺陷地理位置实体完整化具有较高的准确率,可以很好地满足实际应用的需要。
-
公开(公告)号:CN105468791A
公开(公告)日:2016-04-06
申请号:CN201610001346.2
申请日:2016-01-05
Applicant: 北京信息科技大学 , 北京市新技术应用研究所
IPC: G06F17/30
Abstract: 本发明涉及一种基于互动问答社区-百度知道的地理位置实体的完整性表达方法,包括以下步骤:步骤1):通过数据处理提取缺陷地理位置实体defectLoc;步骤2):对提取的defectLoc生成问题:“某defectLoc属于哪个区”,通过百度知道进行检索;步骤3):根据检索的结果提取特征,计算defectLoc属于各个区域的得分,并构建出defectLoc的所属区域特征向量;步骤4):利用规则对defectLoc进行完整化处理。本发明以微博城市投诉文本为基础,针对其中的地理位置实体表达不规范、非结构化的特点,使得工作人员很难进行统计分析工作,本发明提出一种基于百度知道的地理位置实体的完整性表达方法,对缺陷地理位置实体完整化具有较高的准确率,可以很好地满足实际应用的需要。
-
公开(公告)号:CN105335468B
公开(公告)日:2019-09-13
申请号:CN201510623640.2
申请日:2015-09-28
Applicant: 北京信息科技大学 , 北京市新技术应用研究所
IPC: G06F16/29
Abstract: 本发明涉及一种基于百度地图API的地理位置实体规范化方法,包括以下步骤:步骤1):利用百度地图API,对缺陷地理位置实体进行检索;步骤2):利用步骤1)的检索结果,构建缺陷地理位置实体的区域特征向量;步骤3):利用所述区域特征向量,对明确地理位置实体进行规范化;步骤4):利用所述明确地理位置实体,对歧义地理位置实体进行规范化;步骤5):利用等价地理位置实体,对零地理位置实体进行规范化。本发明以城市管理投诉文本为基础,利用地图API实现地理位置实体的规范化,结合城市管理投诉文本的特点、地理位置实体中存在的问题,对不完整的地理位置实体进行区域补全,从而解决了统计分析工作难以进行的局面。
-
公开(公告)号:CN115858813B
公开(公告)日:2025-05-16
申请号:CN202211628660.5
申请日:2022-12-20
Applicant: 北京信息科技大学 , 北京市工程咨询股份有限公司
IPC: G06F16/36 , G06F18/22 , G06F18/214 , G06F16/35 , G06F16/3329 , G06F40/30
Abstract: 本发明涉及面向工程咨询报告的文本检索方法,以改善工程咨询报告撰写过程中人力成本大、编撰周期过长等问题,包括以下步骤:构建面向工程咨询报告的文本检索语料集,使用语料集微调simCSE对比学习模型,将得到的模型参数初始化Vanilla BERT模型,将语料的文本信息送入Vanilla BERT模型得到语义匹配分数。将文本信息和关键词信息通过SAT模型得到词级粒度的义原词向量表示并送入DRMM深度文本交互模型,得到关联匹配分数。将得到的语义匹配分数和关联匹配分数归一化后加权融合,得到最终的匹配分数,完成标题与段落之间的文本检索。本发明联合上下文向量表示和文本交互匹配方法,有效增强了文本检索的效果。
-
公开(公告)号:CN117710661B
公开(公告)日:2025-04-15
申请号:CN202410009296.7
申请日:2024-01-04
Applicant: 北京信息科技大学
Abstract: 本发明公开了一种基于矩形可变形卷积的遥感图像目标检测方法,属于目标检测技术领域,包括利用遥感图像目标检测数据集训练改进的Oriented RCNN模型;其中,设计矩形可变形卷积替换卷积神经网络中的一般卷积,在特征金字塔网络中加入了高级和低级特征融合模块并应用子像素卷积生成高分辨率特征图,删除检测头的两个共享的全连接层并在分类和回归分支分别使用适配网络,得到改进的Oriented RCNN模型;将改进的Oriented RCNN模型用于遥感图像目标检测中。本发明使用了矩形可变形卷积能够更好地适应遥感图像目标的几何变换,特征融合模块用于检索尺度较小的目标。本发明可获得更好的目标检测精度。
-
公开(公告)号:CN119741625A
公开(公告)日:2025-04-01
申请号:CN202411956595.8
申请日:2024-12-29
Applicant: 北京信息科技大学
Abstract: 本发明公开了一种基于跨头部协同蒸馏与特征标准化的航拍图像目标检测方法,其特征在于,包括:训练教师网络,得到一个准确度较高的教师网络;随机初始化学生网络,输入图像之后通过特征金字塔结构获取教师和学生网络的多尺度特征;使用特征共享标准化层获取标准化的教师和学生网络的特征,并求特征相关性损失;将学生网络头部特征通过共享标准化层输入跨头部输入教师网络头部,求得预测一致性损失;通过标签获取学生网络的有监督损失;根据反向传播的梯度信息更新学生网络的权重值。本发明可以通过跨头标准化的方法提升目标检测模型蒸馏效果,使较少参数量的目标检测学生网络获得和较大参数的教师模型近似的精度。
-
公开(公告)号:CN118093874A
公开(公告)日:2024-05-28
申请号:CN202410275955.1
申请日:2024-03-12
IPC: G06F16/35 , G06F16/33 , G06F18/2415 , G06F40/30 , G06F40/284 , G06N3/0455 , G06N3/047 , G06N3/0442 , G06N3/084
Abstract: 本发明涉及一种低资源语言处理领域的情感分析方法。提出一种基于网格结构与多头注意力的新闻句子情感分析方法。包括以下步骤:通过将网格结构无损转换为扁平结构,实现音节序列中单词信息的引入;采用相对位置编码机制,编码音节和单词的位置和方向信息;使用多头自注意力机制,识别序列中音节和单词的关联关系和语义信息;最后通过全连接层进行分类得到低资源语言新闻句子情感类别。本发明解决了传统循环神经网络无法进行大规模并行计算以及卷积神经网络难以建模句子中的长距离依赖关系的问题,其中多头注意力机制的运用,丰富了词语间的关联关系,增强了句子语义和句法结构信息的理解,提高了低资源语言新闻句子情感分类效果。
-
公开(公告)号:CN117710661A
公开(公告)日:2024-03-15
申请号:CN202410009296.7
申请日:2024-01-04
Applicant: 北京信息科技大学
IPC: G06V10/25 , G06V20/10 , G06V10/80 , G06V10/52 , G06V10/44 , G06V10/764 , G06V10/766 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/084 , G06N3/048
Abstract: 本发明公开了一种基于矩形可变形卷积的遥感图像目标检测方法,属于目标检测技术领域,包括利用遥感图像目标检测数据集训练改进的Oriented RCNN模型;其中,设计矩形可变形卷积替换卷积神经网络中的一般卷积,在特征金字塔网络中加入了高级和低级特征融合模块并应用子像素卷积生成高分辨率特征图,删除检测头的两个共享的全连接层并在分类和回归分支分别使用适配网络,得到改进的Oriented RCNN模型;将改进的Oriented RCNN模型用于遥感图像目标检测中。本发明使用了矩形可变形卷积能够更好地适应遥感图像目标的几何变换,特征融合模块用于检索尺度较小的目标。本发明可获得更好的目标检测精度。
-
-
-
-
-
-
-
-
-