-
公开(公告)号:CN112967761B
公开(公告)日:2023-10-27
申请号:CN202110255012.9
申请日:2021-03-09
Applicant: 北京北排水环境发展有限公司 , 北京工业大学
Abstract: 本申请公开了一种基于自组织模糊神经网络的污水除磷加药计算方法及介质。该方法包括:确定以第t时刻的出水总磷浓度设定值与实际值的误差以及误差的变化率为输入数据,以第t时刻加药量增量为输出数据;基于自组织模糊神经网络,建立与时刻t相关的网络模型结构,确定第t时刻的结构参数;随时刻步进,针对网络模型结构进行模糊神经网络自组织调整;根据第t时刻的结构参数计算第t+1时刻的结构参数,获得第t+1时刻的输出数据;将第t+1时刻的输出数据加上第t时刻的加药量,获得第t+1时刻的加药量。本发明采用自组织模糊神经网络控制器根据出水总磷的检测值计算加药量,使出水总磷浓度稳定在设定值附近,最大程度节省药剂投加量。
-
公开(公告)号:CN113156074A
公开(公告)日:2021-07-23
申请号:CN202110196095.9
申请日:2021-02-22
Applicant: 北京工业大学
Abstract: 本发明提出了一种基于模糊迁徙的出水总氮检测方法,针对污水处理过程数据量不足的情况下,难以获得精确检测模型的问题。本发明采用主成分分析算法提取特征变量并建立基于模糊神经网络的检测模型,通过参考模型获取知识,并设计粒子滤波算法对知识进行校正,利用污水处理过程的知识和数据完成检测模型的参数调整,实现出水总氮的精准检测,解决了传统模糊神经网络在数据不足的情况下泛化能力较差的问题,具有较好的学习效率和预测精度,能够保证电子产品回收的高效稳定运行。
-
公开(公告)号:CN112967761A
公开(公告)日:2021-06-15
申请号:CN202110255012.9
申请日:2021-03-09
Applicant: 北京北排水环境发展有限公司 , 北京工业大学
Abstract: 本申请公开了一种基于自组织模糊神经网络的污水除磷加药计算方法及介质。该方法包括:确定以第t时刻的出水总磷浓度设定值与实际值的误差以及误差的变化率为输入数据,以第t时刻加药量增量为输出数据;基于自组织模糊神经网络,建立与时刻t相关的网络模型结构,确定第t时刻的结构参数;随时刻步进,针对网络模型结构进行模糊神经网络自组织调整;根据第t时刻的结构参数计算第t+1时刻的结构参数,获得第t+1时刻的输出数据;将第t+1时刻的输出数据加上第t时刻的加药量,获得第t+1时刻的加药量。本发明采用自组织模糊神经网络控制器根据出水总磷的检测值计算加药量,使出水总磷浓度稳定在设定值附近,最大程度节省药剂投加量。
-
公开(公告)号:CN113156074B
公开(公告)日:2023-06-23
申请号:CN202110196095.9
申请日:2021-02-22
Applicant: 北京工业大学
Abstract: 本发明提出了一种基于模糊迁徙的出水总氮检测方法,属于污水处理领域,针对污水处理过程数据量不足的情况下,难以获得精确检测模型的问题。本发明采用主成分分析算法提取特征变量并建立基于模糊神经网络的检测模型,通过参考模型获取知识,并设计粒子滤波算法对知识进行校正,利用污水处理过程的知识和数据完成检测模型的参数调整,实现出水总氮的精准检测,解决了传统模糊神经网络在数据不足的情况下泛化能力较差的问题,具有较好的学习效率和预测精度。
-
公开(公告)号:CN113157674A
公开(公告)日:2021-07-23
申请号:CN202110221279.6
申请日:2021-02-27
Applicant: 北京工业大学
IPC: G06F16/215 , G06F17/16 , G06F17/18 , G06K9/62
Abstract: 一种基于动态插值的城市污水处理过程数据清洗方法于污水处理领域,针对城市污水处理过程数据中含有离群值和连续重复值混合导致数据质量差的问题。该动态插值方法通过滑动窗口对数据段进行分割,计算分割后数据段的异常因子系数,判定数据段异常情况,剔除异常数据段内的离群值和连续异常值,采用随机森林回归模型对缺失数据进行补偿,提高了城市污水处理过程数据的质量;实验结果表明该方法提高了数据补偿的精度,保障在城市污水处理工业中数据库的数据质量,提高了污水处理厂的研究提的可信度。
-
公开(公告)号:CN112967763A
公开(公告)日:2021-06-15
申请号:CN202110250836.7
申请日:2021-03-08
Applicant: 北京北排水环境发展有限公司 , 北京工业大学
Abstract: 本申请公开了一种基于模糊神经网络的出水总磷预测方法、电子设备及介质。该方法可以包括:确定出水总磷的特征变量作为输入变量;构建基于模糊神经网络的初始预测模型;获取训练样本并输入至初始预测模型,通过多目标粒子群优化算法确定最终预测模型;将输入变量输入至最终预测模型,计算出水总磷。本发明建立基于模糊神经网络的预测模型对出水总磷进行预测,采用非对称隶属函数对变量数据的分布特性进行描述,利用多目标粒子群优化算法同时对模糊神经网络结构和参数进行动态调整,实现污水处理出水总磷浓度的实时预测。
-
-
-
-
-