-
公开(公告)号:CN103193196A
公开(公告)日:2013-07-10
申请号:CN201310089315.3
申请日:2013-03-20
Applicant: 北京大学
Abstract: 本发明涉及一种三维微纳米结构的组装方法,其步骤包括:采用常规微机电系统工艺方法、纳机电系统工艺方法和聚焦离子束与微机电系统/纳机电系统结合中的一种工艺方法中制作一端是自由端,另一端是固定端的悬臂梁结构;从悬臂梁的自由端到固定端以均匀间距为标准,依次在悬臂梁上通过离子刻蚀的方式设置刻蚀区域;确定控制聚焦离子束的注入剂量,确定与结构弯曲的角度现有的聚焦离子束扫描倾斜的角度,确定与悬臂梁上设置刻蚀区域现有的聚焦离子束扫描的间距;从悬臂梁的自由端第一个刻蚀区域开始依次用聚焦离子束对各刻蚀区域进行刻蚀,使整个悬臂梁形成向下卷曲的螺旋、折叠、正弦形、发条等结构。本发明可以广泛用于纳米螺旋、纳米管、折叠、正弦形、发条等结构的制作过程中。
-
公开(公告)号:CN103193196B
公开(公告)日:2015-09-30
申请号:CN201310089315.3
申请日:2013-03-20
Applicant: 北京大学
Abstract: 本发明涉及一种三维微纳米结构的组装方法,其步骤包括:采用常规微机电系统工艺方法、纳机电系统工艺方法和聚焦离子束与微机电系统/纳机电系统结合中的一种工艺方法中制作一端是自由端,另一端是固定端的悬臂梁结构;从悬臂梁的自由端到固定端以均匀间距为标准,依次在悬臂梁上通过离子刻蚀的方式设置刻蚀区域;确定控制聚焦离子束的注入剂量,确定与结构弯曲的角度现有的聚焦离子束扫描倾斜的角度,确定与悬臂梁上设置刻蚀区域现有的聚焦离子束扫描的间距;从悬臂梁的自由端第一个刻蚀区域开始依次用聚焦离子束对各刻蚀区域进行刻蚀,使整个悬臂梁形成向下卷曲的螺旋、折叠、正弦形、发条等结构。本发明可以广泛用于纳米螺旋、纳米管、折叠、正弦形、发条等结构的制作过程中。
-
公开(公告)号:CN103602836B
公开(公告)日:2015-09-16
申请号:CN201310452144.6
申请日:2013-09-27
Applicant: 北京大学 , 有研稀土新材料股份有限公司
IPC: C22B59/00
Abstract: 一种在固相下去除粗稀土金属中一种或多种非金属杂质的方法,主要步骤是用金属箔片将粗稀土金属和与粗稀土金属直接接触的吸气剂紧密包裹后置于加热容器中,调节反应气氛后,在一定温度下反应,加热过程中粗稀土金属的非金属杂质扩散进入吸气剂中,从而达到提纯粗稀土金属的目的,冷却后将吸气剂与稀土金属分离即可。本方法能在固相下有效去除稀土金属中的非金属杂质,而且对稀土金属的形状、杂质含量要求很低,对体系的反应条件,如真空度、温度等的要求也非常低,操作简单,流程少,极有在工业上大量提纯稀土金属的潜力。
-
公开(公告)号:CN103589874A
公开(公告)日:2014-02-19
申请号:CN201310452047.7
申请日:2013-09-27
Applicant: 北京大学 , 有研稀土新材料股份有限公司
IPC: C22B9/10
Abstract: 本发明公开了一种在温差下提纯金属材料的方法。通过将待提纯的金属材料与吸气剂置于一封闭体系中,封闭体系中是真空或合适的气氛,原料和吸气剂之间保持一定的距离,以实现在一定的温差下加热,加热过程中杂质先从待提纯的金属材料进入封闭体系,然后被吸气剂吸收。本发明对金属材料几何尺寸、原始杂质含量,以及真空度的要求不高,成本低,效率高,实现工业化的潜力很大。
-
公开(公告)号:CN103589874B
公开(公告)日:2016-01-27
申请号:CN201310452047.7
申请日:2013-09-27
Applicant: 北京大学 , 有研稀土新材料股份有限公司
IPC: C22B9/10
Abstract: 本发明公开了一种在温差下提纯金属材料的方法。通过将待提纯的金属材料与吸气剂置于一封闭体系中,封闭体系中是真空或合适的气氛,原料和吸气剂之间保持一定的距离,以实现在一定的温差下加热,加热过程中杂质先从待提纯的金属材料进入封闭体系,然后被吸气剂吸收。本发明对金属材料几何尺寸、原始杂质含量,以及真空度的要求不高,成本低,效率高,实现工业化的潜力很大。
-
公开(公告)号:CN103602836A
公开(公告)日:2014-02-26
申请号:CN201310452144.6
申请日:2013-09-27
Applicant: 北京大学 , 有研稀土新材料股份有限公司
IPC: C22B59/00
Abstract: 一种在固相下去除粗稀土金属中一种或多种非金属杂质的方法,主要步骤是用金属箔片将粗稀土金属和与粗稀土金属直接接触的吸气剂紧密包裹后置于加热容器中,调节反应气氛后,在一定温度下反应,加热过程中粗稀土金属的非金属杂质扩散进入吸气剂中,从而达到提纯粗稀土金属的目的,冷却后将吸气剂与稀土金属分离即可。本方法能在固相下有效去除稀土金属中的非金属杂质,而且对稀土金属的形状、杂质含量要求很低,对体系的反应条件,如真空度、温度等的要求也非常低,操作简单,流程少,极有在工业上大量提纯稀土金属的潜力。
-
-
-
-
-