-
公开(公告)号:CN118773742A
公开(公告)日:2024-10-15
申请号:CN202410734646.6
申请日:2024-06-07
Applicant: 北京大学
Abstract: 本发明公开了一种III族氮化物半导体晶格极性的调控方法。本发明通过在III族氮化物的制备过程中引入反型层,利用反型层重塑晶格驱动III族氮化物晶格极性的反转,使得III族氮化物能够在制备过程中完成可控的晶格极性反转,实现了对目标III族氮化物金属极性和氮极性可选择性的生长,其最终极性与氮化物初始极性无关;本发明极大拓展了III族氮化物外延生长的衬底选择范围,特别是对于制备难度和成本更高的氮极性III族氮化物,使之能在更低廉的金属极性上完成制备,制备流程简单、可控且成本低,对于进一步实现低本高效氮极性III族氮化物生长及其功率射频器件意义重大。
-
公开(公告)号:CN118374878B
公开(公告)日:2024-09-06
申请号:CN202410832059.0
申请日:2024-06-26
Applicant: 北京大学
IPC: C30B25/18 , C30B33/04 , C30B29/38 , C23C14/04 , C23C14/48 , C23C14/18 , C23C14/58 , C23C16/06 , C23C16/56
Abstract: 本发明公开了一种可控多畴结构氮化物铁电薄膜的制备方法。本发明利用自组装掩膜、离子注入工艺和外延生长方式,得到高质量可控多畴结构的氮化物铁电薄膜,具有更小的翻转能垒,能够大幅降低工作电压;同时具有更加可控的部分电畴翻转能力,有利于实现多态存储;利用离子注入得到非晶高电阻,大幅降低了漏电;在不引入额外漏电的情况下实现可控的多畴结构,降低新型氮化物基铁电器件的漏电和工作电压,大幅提高氮化物铁电材料的寿命和可靠性,降低相关器件能耗,并提升器件的多态调制能力,使得氮化物铁电材料能够用于制备高性能电子器件、铁电存储器、光电器件、声学器件和非线性光子器件等,并且应用于神经形态计算和人工智能等新兴领域。
-
公开(公告)号:CN116568042A
公开(公告)日:2023-08-08
申请号:CN202310835363.6
申请日:2023-07-10
Applicant: 北京大学
IPC: H10B51/30 , H01L29/78 , H01L21/336
Abstract: 本发明公开了一种电写光读氮化物铁电神经形态器件及其制备方法。本发明各层结构在同一设备的同一腔体中全外延实现,有利于提升界面质量,并提升器件的可靠性;利用多层复合式铁电层功能层,有利于增强器件的多态特性,通过精确控制超晶格中各层氮化物铁电层的掺杂元素组分,实现组分梯度变化,氮化物铁电层中掺杂元素组分浓度对矫顽场的调制作用,实现各层氮化物铁电层具有不同的矫顽电压,氮化物铁电神经形态器件的阈值电压呈离散值,从而实现低重叠、高鲁棒和抗噪声的多态数据存储能力,还能够更高效地模仿生物神经系统中突触的能力;本发明实现光读取能力,赋予了器件更多的操作维度,能够广泛应用于神经形态计算系统或新型存算一体系统中。
-
公开(公告)号:CN113193038B
公开(公告)日:2022-08-26
申请号:CN202110354525.5
申请日:2021-04-01
Applicant: 北京大学
IPC: H01L29/06 , H01L29/205 , H01L29/778 , H01L21/335
Abstract: 本发明公开了一种p型沟道的III‑V族材料异质结构和HEMT器件及制备方法。本发明的p型沟道的III‑V族异质结构包括:衬底、缓冲层、势阱层、二维空穴气和势垒层,二维空穴气为极化诱导形成,无需掺杂;本发明的HEMT器件中的二维空穴气距离异质结构的表面近,能够实现器件的有效栅控;势垒层厚度薄,有利于形成平整的异质结界面,减小缺陷和粗糙度,提高二维空穴气的迁移率;异质结构中二维空穴气的浓度和距外延表面的距离皆可调,能够根据应用需求灵活设计。
-
公开(公告)号:CN118524775B
公开(公告)日:2024-09-24
申请号:CN202410988745.7
申请日:2024-07-23
Applicant: 北京大学
Abstract: 本发明公开了一种具有温度感知功能的氮化物铁电神经形态器件及实现方法。本发明通过第一和第二热膨胀层与氮化物铁电层的热膨胀系数不同,在温度变化时对氮化物铁电层的夹持作用,对氮化物铁电层施加随温度变化的应力,调控矫顽电场,分别实现电写入和热写入;本发明赋予了氮化物铁电神经形态器件新的温度感知功能,应用于高性能电子器件、铁电存储器、传感器、光电器件、声学器件和非线性光子器件等领域,能够显著提升相关神经形态计算系统的集成度和功能性,并拓宽氮化物铁电半导体材的在人工智能和物联网等领域的应用场景。
-
公开(公告)号:CN117535790B
公开(公告)日:2024-04-02
申请号:CN202410033428.X
申请日:2024-01-10
Applicant: 北京大学
Abstract: 本发明公开了一种基于声表面波原位注入的分子束外延生长台及其实现方法。本发明的分子束外延生长台包括声表面波发生器和供电支架;本发明的分子束外延生长台能够直接应用于真空分子外延生长设备中生长半导体晶体,供电支架为表面波发生基底以无线射频形式提供设定频率的交流电信号,在分子外延生长的过程中原位产生声表面波,从而实现声表面波辅助的半导体晶体的分子束外延生长;并且,压电半导体薄膜采用具有良好耐热性的材料,能够在高温正常工作;本发明设计的结构能够很好与当前商用分子外延生长设备兼容,在无需改装生长腔体的情况下原位产生声表面波,从而辅助分子外延生长。
-
公开(公告)号:CN117228641A
公开(公告)日:2023-12-15
申请号:CN202311524764.6
申请日:2023-11-16
Applicant: 北京大学
IPC: C01B21/00
Abstract: 本发明公开了一种补偿氮空位并抑制漏电流的氮化物铁电薄膜的制备方法。本发明利用离子注入和热退火工艺,得到补偿氮空位并抑制漏电流的氮化物铁电薄膜;本发明既能够通过大剂量、大能量和高深度的近下表面氮离子注入,解决由于应力引起的下表面附近的大量的氮空位缺陷,又能够通过多次氮离子注入方式,在整个氮化物铁电薄膜中实现均匀分布的氮浓度,解决整个氮化物铁电薄膜中的氮空位;本发明有效解决氮化物铁电薄膜中的氮空位问题,具有显著地漏电抑制作用,提高氮化物铁电薄膜的寿命和可靠性,同时降低相关器件能耗,使得氮化物铁电氮化物铁电薄膜能够用于制备高性能电子器件、铁电存储器、光电器件、声学器件和非线性光子器件中。
-
公开(公告)号:CN115911094A
公开(公告)日:2023-04-04
申请号:CN202211443885.3
申请日:2022-11-18
Applicant: 北京大学
IPC: H01L29/06 , H01L29/10 , H01L29/778 , H10B51/30 , H01L21/335
Abstract: 本发明公开了一种基于外延技术的三端铁电存储器及其制备方法。本发明利用外延技术实现高质量的铁电介质层和沟道;通过插入层、阻挡层和高阻缓冲层的引入,大大降低了铁电存储器的漏电问题,使得该器件具有更好的稳定性和耐受性,提升器件的寿命,降低器件的产热和功耗;利用ScAlN铁电介质层作为铁电功能层的同时,与GaN形成异质结,以异质结的界面作为沟道,相比于传统铁电存储器沟道和铁电介质层分离的结构,简化了工艺步骤;并且由于异质结沟道中载流子浓度和载流子迁移率远大于传统铁电存储器中的半导体沟道,使得本发明中的三端铁电存储器具有更高的功率密度和更好的高频特性,能够被用于射频和大功率电路等领域。
-
公开(公告)号:CN117228641B
公开(公告)日:2024-01-30
申请号:CN202311524764.6
申请日:2023-11-16
Applicant: 北京大学
IPC: C01B21/00
Abstract: 本发明公开了一种补偿氮空位并抑制漏电流的氮化物铁电薄膜的制备方法。本发明利用离子注入和热退火工艺,得到补偿氮空位并抑制漏电流的氮化物铁电薄膜;本发明既能够通过大剂量、大能量和高深度的近下表面氮离子注入,解决由于应力引起的下表面附近的大量的氮空位缺陷,又能够通过多次氮离子注入方式,在整个氮化物铁电薄膜中实现均匀分布的氮浓度,解决整个氮化物铁电薄膜中的氮空位;本发明有效解决氮化物铁电薄膜中的氮空位问题,具有显著地漏电抑制作用,提高氮化物铁电薄膜的寿命和可靠性,同时降低相关器件能耗,使得氮化物铁电氮化物铁电薄膜能够用于制备高性能电子器件、铁电存储器、光电器件、声学器件和非线性光子
-
公开(公告)号:CN116568042B
公开(公告)日:2023-09-08
申请号:CN202310835363.6
申请日:2023-07-10
Applicant: 北京大学
IPC: H10B51/30 , H01L29/78 , H01L21/336
Abstract: 本发明公开了一种电写光读氮化物铁电神经形态器件及其制备方法。本发明各层结构在同一设备的同一腔体中全外延实现,有利于提升界面质量,并提升器件的可靠性;利用多层复合式铁电层功能层,有利于增强器件的多态特性,通过精确控制超晶格中各层氮化物铁电层的掺杂元素组分,实现组分梯度变化,氮化物铁电层中掺杂元素组分浓度对矫顽场的调制作用,实现各层氮化物铁电层具有不同的矫顽电压,氮化物铁电神经形态器件的阈值电压呈离散值,从而实现低重叠、高鲁棒和抗噪声的多态数据存储能力,还能够更高效地模仿生物神经系统中突触的能力;本发明实现光读取能力,赋予了器件更多的操作维度,能够广泛应用于神经形态计算系统或新型存算一体系统中。
-
-
-
-
-
-
-
-
-