-
公开(公告)号:CN106044777A
公开(公告)日:2016-10-26
申请号:CN201610382034.0
申请日:2016-06-01
Applicant: 北京大学
IPC: C01B33/023 , B82Y30/00
CPC classification number: C01B33/023 , B82Y30/00 , C01P2004/64 , C01P2006/12 , C01P2006/16
Abstract: 本发明公开了一种由二氧化硅制备纳米硅的新方法,该方法基于镁热还原SiO2是放热的自发反应的原理,通过在室温下低转速球磨引发反应,并利用反应放热,维持反应自发进行,10min即可基本完成。原料简单易得,操作步骤非常简单,具有简单快捷,产率高,成本低、反应产物纯度高、易于放大等优势,制备出的纳米硅颗粒尺寸小,分布均匀,具有多孔结构,可利用在锂离子电池负极材料,传感器,光学器件等各个方面,极具工业化应用前景。
-
公开(公告)号:CN108796552B
公开(公告)日:2019-11-19
申请号:CN201810622331.7
申请日:2018-06-15
Applicant: 北京大学
Abstract: 本发明公开了一种Ni2P负载Ni基催化剂的制备方法及得到的Ni2P负载Ni基催化剂及其应用,其中,采用等离子体处理镍单质、镍氢氧化物以及镍氧化物均可成功实现低温磷化,得到Ni2P。同时,所述制备方法采用无毒红磷为磷源,避免了使用高毒性磷(例如PH3)、白磷或五氯化磷,以及避免使用了昂贵的有机试剂,例如P(SiMe3)3和三辛基磷(TOP)。并且,利用本发明所述制备方法得到的Ni2P负载Ni基催化剂可以直接用于电解水析氢,避免了传统颗粒型催化剂对粘结剂的使用。
-
公开(公告)号:CN108796552A
公开(公告)日:2018-11-13
申请号:CN201810622331.7
申请日:2018-06-15
Applicant: 北京大学
Abstract: 本发明公开了一种Ni2P负载Ni基催化剂的制备方法及得到的Ni2P负载Ni基催化剂及其应用,其中,采用等离子体处理镍单质、镍氢氧化物以及镍氧化物均可成功实现低温磷化,得到Ni2P。同时,所述制备方法采用无毒红磷为磷源,避免了使用高毒性磷(例如PH3)、白磷或五氯化磷,以及避免使用了昂贵的有机试剂,例如P(SiMe3)3和三辛基磷(TOP)。并且,利用本发明所述制备方法得到的Ni2P负载Ni基催化剂可以直接用于电解水析氢,避免了传统颗粒型催化剂对粘结剂的使用。
-
公开(公告)号:CN112645308B
公开(公告)日:2022-04-19
申请号:CN202011495143.6
申请日:2020-12-17
Abstract: 一种铜碳原子级均匀共复合的超细多孔纳米硅的合成方法,它属于纳米材料合成技术领域。本发明要解决现有利用多种改性手段相结合的方式改性硅材料,存在需要复杂的多步反应和高温加热的反应条件,导电性低,掺杂效果不均匀,制备的多孔结构分布和大小不均匀的问题。制备方法:一、将硅化镁、氯化亚铜、氯化锡、氯化硅及碳基材料球磨;二、室温下,将球磨后的混合物浸渍于盐酸中,再利用乙醇和水的混合液为洗涤液进行洗涤,然后离心分离及干燥。本发明用于铜碳原子级均匀共复合的超细多孔纳米硅的合成。
-
公开(公告)号:CN112645308A
公开(公告)日:2021-04-13
申请号:CN202011495143.6
申请日:2020-12-17
Abstract: 一种铜碳原子级均匀共复合的超细多孔纳米硅的合成方法,它属于纳米材料合成技术领域。本发明要解决现有利用多种改性手段相结合的方式改性硅材料,存在需要复杂的多步反应和高温加热的反应条件,导电性低,掺杂效果不均匀,制备的多孔结构分布和大小不均匀的问题。制备方法:一、将硅化镁、氯化亚铜、氯化锡、氯化硅及碳基材料球磨;二、室温下,将球磨后的混合物浸渍于盐酸中,再利用乙醇和水的混合液为洗涤液进行洗涤,然后离心分离及干燥。本发明用于铜碳原子级均匀共复合的超细多孔纳米硅的合成。
-
公开(公告)号:CN107265462A
公开(公告)日:2017-10-20
申请号:CN201710313733.4
申请日:2017-05-05
Applicant: 北京大学
IPC: C01B33/033 , B82Y40/00
CPC classification number: C01B33/033 , C01P2002/72 , C01P2004/03 , C01P2004/64 , C01P2006/12
Abstract: 本发明公开了一种由四卤化硅制备纳米硅的方法,该方法基于碱金属和碱土金属的强还原性,通过在室温下球磨实现四卤化硅的快速高效还原。该方法极其简单高效,不需要使用任何溶剂和其它反应介质,且可以在室温下大量合成纳米硅,具有原料廉价易得,反应简单快捷,产率高,成本低,容易扩大生产等优势。所制备出的纳米硅纯度高,尺寸小,可调控,且分布均匀,可用于锂离子电池负极材料,太阳能电池,传感器,光学器件等各个方面,极具工业化应用前景。
-
-
-
-
-