-
公开(公告)号:CN118691877A
公开(公告)日:2024-09-24
申请号:CN202410700827.7
申请日:2024-05-31
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/82 , G06V10/77 , G06N3/0464
Abstract: 本发明涉及一种高分遥感图像目标状态判别方法、设备及存储介质,包括:利用全景分割网络对高分遥感图像进行全景分割,得到高分遥感图像全景分割图像;根据高分遥感图像全景分割图像中地物目标之间的空间关系生成场景知识图谱;设计基于全景分割图像的遥感地物目标位置编码方法,将地物目标的位置编码加入到对应场景知识图谱中,得到包含位置信息的场景知识图谱;基于预先设定的先验规则知识,对关注目标进行状态的预先判别;构建基于混合卷积的目标动向判别网络,利用目标动向判别网络对经过预判别的场景知识图谱进行计算,得到关注目标的状态判别结果。本发明,能够实现遥感关注地物目标的状态判别。
-
公开(公告)号:CN116486169B
公开(公告)日:2023-12-19
申请号:CN202310477115.9
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/762 , G06F16/36 , G06V10/82 , G06N3/0464 , G06N3/08 , G06V20/50
Abstract: 本发明涉及遥感图像目标动向判别方法,包括:S100,对遥感图像进行全景分割标注和目标行为动向标注,确定目标动向知识图谱;S200,基于遥感图像建立全景分割模型,以ResNet作为特征提取主干网络,并引入交叉注意力模块提取长距上下文信息;S300,根据全景分割网络中的实例分割分支对遥感图像进行实例级分割,根据全景分割网络中的语义分割分支对遥感图像进行语义级分割;S400,引入基于贝叶斯决策的分支融合模块,对实例分割分支和语义分割分支的结果进行决策融合,生成全景分割图像;S500,将全景分割图像进行像素聚类生成场景信息知识图谱;S600,根据图注意力网络,对场景信息知识图谱中的关注目标进行动向判别。本发明可推理遥感图像中目标的行为动向信息。
-
公开(公告)号:CN116630820A
公开(公告)日:2023-08-22
申请号:CN202310530434.1
申请日:2023-05-11
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/26 , G06V10/32 , G06V10/44 , G06V10/762 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种光学遥感数据星上并行处理方法与装置,所述装置包括:主控与预处理模块(100),用于通过星务轮询方式获取光学遥感数据并进行预处理与切片处理;至少一个数据处理模块(200),用于对所述预处理与切片处理后的光学遥感数据进行目标的并行检测识别或语义分割,再将结果回传至所述主控与预处理模块(100);电源模块(300),用于对所述主控与预处理模块(100)和所述数据处理模块(200)上电;背板(400),用于连接所述主控与预处理模块(100)、所述数据处理模块(200)和所述电源模块(300)。通过实施本发明的上述方案,可用于光学遥感卫星数据的在轨并行处理,从而实现目标的在轨实时检测识别以及光学遥感数据的在轨实时语义分割。
-
公开(公告)号:CN116486085B
公开(公告)日:2023-12-19
申请号:CN202310474551.0
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感图像的场景描述方法,包括:S100,根据遥感图像构建遥感知识词库;S200,根据Mask2Former网络对所述遥感图像进行全景分割,得到全景分割结果并生成语义分割结果;S300,引入语义扩充模块,根据所述全景分割结果和所述语义分割结果对所述遥感图像进行语义扩充;S400,以ResNet特征提取网络为基础,引入基于通道的注意力模块,提取所述遥感图像中不同通道的语义特征信息;S500,以LSTM场景描述网络为基础,引入知识融合模块,生成关于所述遥感图像的场景描述语句。本发明能更加准确地描述高分遥感图像所携带的丰富语义及空间信息,可应用于遥感图像智能解译、遥感图像大数据管理等领域,具有广阔的前景。
-
公开(公告)号:CN116486169A
公开(公告)日:2023-07-25
申请号:CN202310477115.9
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/762 , G06F16/36 , G06V10/82 , G06N3/0464 , G06N3/08 , G06V20/50
Abstract: 本发明涉及遥感图像目标动向判别方法,包括:S100,对遥感图像进行全景分割标注和目标行为动向标注,确定目标动向知识图谱;S200,基于遥感图像建立全景分割模型,以ResNet作为特征提取主干网络,并引入交叉注意力模块提取长距上下文信息;S300,根据全景分割网络中的实例分割分支对遥感图像进行实例级分割,根据全景分割网络中的语义分割分支对遥感图像进行语义级分割;S400,引入基于贝叶斯决策的分支融合模块,对实例分割分支和语义分割分支的结果进行决策融合,生成全景分割图像;S500,将全景分割图像进行像素聚类生成场景信息知识图谱;S600,根据图注意力网络,对场景信息知识图谱中的关注目标进行动向判别。本发明可推理遥感图像中目标的行为动向信息。
-
公开(公告)号:CN119741467A
公开(公告)日:2025-04-01
申请号:CN202411637460.5
申请日:2024-11-15
Applicant: 北京卫星信息工程研究所
IPC: G06V10/25 , G01S13/90 , G06V20/13 , G06V10/44 , G06V10/46 , G06V10/80 , G06V10/762 , G06V10/764 , G06V10/766 , G06V10/84 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种基于光学和SAR遥感数据的飞机目标检测识别方法与装置,所述方法包括以下步骤:S1、选用标注完整的SAR图像形成数据集A用来训练第一目标检测模型;S2、选用与数据集A处于同区域同时刻的光学图像形成数据集B用来训练第二目标检测模型;S3、获取同区域同时刻的SAR、光学图像,并分别输入第一、第二目标检测模型检测,并根据检测目标的姿态角分别对第一、第二目标检测模型的检测结果进行旋转变换,获得第一、第二检测结果;S4、通过基于注意力的决策融合检测算法对上述第一、第二检测结果进行决策融合。本发明采用深度学习图像处理方法,通过光学、SAR多传感器数据融合检测技术,有效提高了目标识别的准确性。
-
公开(公告)号:CN116486085A
公开(公告)日:2023-07-25
申请号:CN202310474551.0
申请日:2023-04-27
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感图像的场景描述方法,包括:S100,根据遥感图像构建遥感知识词库;S200,根据Mask2Former网络对所述遥感图像进行全景分割,得到全景分割结果并生成语义分割结果;S300,引入语义扩充模块,根据所述全景分割结果和所述语义分割结果对所述遥感图像进行语义扩充;S400,以ResNet特征提取网络为基础,引入基于通道的注意力模块,提取所述遥感图像中不同通道的语义特征信息;S500,以LSTM场景描述网络为基础,引入知识融合模块,生成关于所述遥感图像的场景描述语句。本发明能更加准确地描述高分遥感图像所携带的丰富语义及空间信息,可应用于遥感图像智能解译、遥感图像大数据管理等领域,具有广阔的前景。
-
公开(公告)号:CN119445380A
公开(公告)日:2025-02-14
申请号:CN202411502090.4
申请日:2024-10-25
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的建筑物智能提取方法:步骤S1、获取高分辨率数据集;步骤S2、设计基于编码‑解码结构的遥感影像建筑物语义分割网络,包括特征提取骨架网络和语义分割解码器;步骤S3、设计基于生成对抗网络的遥感影像建筑物DSM估计网络,包括DSM生成器和DSM判别器,DSM生成器包括DSM生成器编码器和DSM生成器解码器;步骤S4、设计特征融合与加强模块;步骤S5、设计损失函数;步骤S6、根据高分辨率数据集和损失函数,训练优化遥感影像建筑物智能提取网络;步骤S7、通过训练完成的遥感影像建筑物智能提取网络进行基于遥感影像的建筑物智能提取。本发明的方法解决了DSM获取代价昂贵的问题,有效改善提取遥感影像中的建筑物的性能。
-
公开(公告)号:CN118736431A
公开(公告)日:2024-10-01
申请号:CN202410739940.6
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06T5/50 , G06T3/4053 , G06V10/764 , G06V10/774 , G06V10/80 , G06F17/16 , G06F17/18 , G06N3/0464 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于遥感图像变化检测的场景态势生成方法,包括:获取同一区域不同时相的两幅高分辨率卫星遥感影像,并进行预处理;构建基于Swin Transformer的双分支U‑net变化检测网络,对不同时相的两幅所述高分辨率卫星遥感影像进行变化检测;根据变化检测网络输出的变化地物的边界信息对空间关系建模,构建图卷积神经网络,生成边集和邻接矩阵;使用人工标注的遥感变化检测数据集,对图卷积神经网络进行训练,得到基于遥感图像变化检测的场景态势生成模型;利用训练好的基于遥感图像变化检测的场景态势生成模型,对测试集中的数据进行测试,得到遥感变化图像的态势。本发明,充分利用双时相遥感图像的丰富语义信息,实现变化场景态势的自动生成。
-
公开(公告)号:CN116630820B
公开(公告)日:2024-02-06
申请号:CN202310530434.1
申请日:2023-05-11
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/26 , G06V10/32 , G06V10/44 , G06V10/762 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种光学遥感数据星上并行处理方法与装置,所述装置包括:主控与预处理模块(100),用于通过星务轮询方式获取光学遥感数据并进行预处理与切片处理;至少一个数据处理模块(200),用于对所述预处理与切片处理后的光学遥感数据进行目标的并行检测识别或语义分割,再将结果回传至所述主控与预处理模块理模块(100)和所述数据处理模块(200)上电;背板(400),用于连接所述主控与预处理模块(100)、所述数据处理模块(200)和所述电源模块(300)。通过实施本发明的上述方案,可用于光学遥感卫星数据的在轨并行处理,从而实现目标的在轨实时检测识别以及光学遥感数据的在轨实时语义分割。(100);电源模块(300),用于对所述主控与预处
-
-
-
-
-
-
-
-
-