-
公开(公告)号:CN117576522B
公开(公告)日:2024-04-26
申请号:CN202410076456.X
申请日:2024-01-18
Applicant: 之江实验室
IPC: G06V10/774
Abstract: 本说明书公开了一种基于拟态结构动态防御的模型训练方法及装置。所述任务执行方法包括:获取预训练模型,将训练预训练模型所使用的第一图像输入到预训练模型中,得到第一图像对应的识别结果。根据第一图像对应的识别结果以及第一图像对应的实际标签,确定出第二图像。将第二图像输入到预训练模型中,以通过预训练模型中的权重网络层,确定预训练模型中设置的各子识别网络对应的权重,以及通过每个子识别网络,分别对第二图像进行识别,得到各识别结果,并根据确定出的各子识别网络对应的权重,对各识别结果进行加权,得到最终识别结果,以最小化最终识别结果与实际标签之间的偏差为优化目标,对预训练模型进行训练。
-
公开(公告)号:CN116523032B
公开(公告)日:2023-09-29
申请号:CN202310235411.8
申请日:2023-03-13
Applicant: 之江实验室
IPC: G06N3/094 , G06N3/096 , G06V30/19 , G06N3/0464
Abstract: 本发明公开了一种图像文本双端迁移攻击方法、装置和介质,该方法的步骤包括分析攻击目标模型、本地替代模型训练、对抗样本生成和对抗样本迁移,其中,分析攻击目标模型,即对比语言图像预训练模型,其可以接受图像与文本两端输入,之后根据输出向量的相似度进行结果预测;本地替代模型训练为根据目标模型的骨干网络训练替代模型,用于迁移攻击;对抗样本生成为对本地替代模型的进行攻击,进而获得图像和文本的对抗样本;对抗样本迁移为对抗样本输入对比语言图像预训练模型,最终导致网络无法正常工作,网络预测分类错误。本发明从图像和文本两个输入端口进行攻击,同时在本地训练相关模型进行迁移攻击,大幅提高了攻击成功率。
-
公开(公告)号:CN116089955B
公开(公告)日:2023-09-26
申请号:CN202211528529.1
申请日:2022-12-01
Applicant: 之江实验室
Abstract: 本发明公开了一种基于windows操作系统的系统调用去噪方法及装置,该方法基于提取到的系统调用参数,构造进程‑线程亲子关系图谱和时序图,对线程进行行为分析和过滤,保留在磁盘/内存/注册表/网络层面产生增、删、改行为的线程,并对这些进程产生的系统调用生成了系统调用描述文件。该方法能够有效减少在系统调用分析中原始数据的噪声,同时保留系统调用原有的亲缘和时序关系,使得计算机产生的系统调用能够以文本的形式进行描述和比较。
-
公开(公告)号:CN117576522A
公开(公告)日:2024-02-20
申请号:CN202410076456.X
申请日:2024-01-18
Applicant: 之江实验室
IPC: G06V10/774
Abstract: 本说明书公开了一种基于拟态结构动态防御的模型训练方法及装置。所述任务执行方法包括:获取预训练模型,将训练预训练模型所使用的第一图像输入到预训练模型中,得到第一图像对应的识别结果。根据第一图像对应的识别结果以及第一图像对应的实际标签,确定出第二图像。将第二图像输入到预训练模型中,以通过预训练模型中的权重网络层,确定预训练模型中设置的各子识别网络对应的权重,以及通过每个子识别网络,分别对第二图像进行识别,得到各识别结果,并根据确定出的各子识别网络对应的权重,对各识别结果进行加权,得到最终识别结果,以最小化最终识别结果与实际标签之间的偏差为优化目标,对预训练模型进行训练。
-
公开(公告)号:CN116523032A
公开(公告)日:2023-08-01
申请号:CN202310235411.8
申请日:2023-03-13
Applicant: 之江实验室
IPC: G06N3/094 , G06N3/096 , G06V30/19 , G06N3/0464
Abstract: 本发明公开了一种图像文本双端迁移攻击方法、装置和介质,该方法的步骤包括分析攻击目标模型、本地替代模型训练、对抗样本生成和对抗样本迁移,其中,分析攻击目标模型,即对比语言图像预训练模型,其可以接受图像与文本两端输入,之后根据输出向量的相似度进行结果预测;本地替代模型训练为根据目标模型的骨干网络训练替代模型,用于迁移攻击;对抗样本生成为对本地替代模型的进行攻击,进而获得图像和文本的对抗样本;对抗样本迁移为对抗样本输入对比语言图像预训练模型,最终导致网络无法正常工作,网络预测分类错误。本发明从图像和文本两个输入端口进行攻击,同时在本地训练相关模型进行迁移攻击,大幅提高了攻击成功率。
-
公开(公告)号:CN119939608A
公开(公告)日:2025-05-06
申请号:CN202510423675.5
申请日:2025-04-07
Applicant: 之江实验室
IPC: G06F21/57 , G06F21/56 , G06F11/362
Abstract: 本申请公开了一种代码漏洞检测方法、装置、介质及设备,在获取到样本代码集后,可以识别出样本代码集中包含的各样本代码中的注释信息并删除,得到各脱敏代码,然后,按照预设的调整策略,对每个脱敏代码进行调整,得到与脱敏代码的代码标识相同的至少一个增强代码,后续通过将属于同一代码标识的各代码片段进行组合,可以得到一个代码标识所对应的多个复合代码,进而通过这些复合代码,构建测评集,以通过测评集,对漏洞检测模型进行调整,并通过调整后的漏洞检测模型进行代码漏洞检测,进而在后续的实际应用中,可以显著的提升漏洞检测模型的识别准确性。
-
公开(公告)号:CN117369783B
公开(公告)日:2024-02-23
申请号:CN202311665188.7
申请日:2023-12-06
Applicant: 之江实验室
Abstract: 在本说明书提供的一种安全代码生成模型的训练方法及装置中,根据第一业务需求指令与第一安全代码,确定思维链提示文本,以及将安全提示词、第二业务需求指令以及该思维链提示文本,输入安全代码生成模型,生成第二安全代码。根据第二业务需求指令,通过该安全代码生成模型,生成业务代码,根据该业务代码与该第二安全代码的差异,确定损失,并以损失最小为优化目标训练该安全代码生成模型。通过引入思维链提示文本,使生成的第二安全代码兼顾了安全风险,及以该第二安全代码与业务代码的损失最小为优化目标训练模型,使训练完的安全代码生成模型仅根据业务需求指令,就可生成满足该业务需求且兼顾安全风险的安全代码,节约了代码开发的成本。(56)对比文件张晶;黄小锋.基于业务模型和界面模型的代码生成工具.电脑与信息技术.2016,(第02期),全文.
-
公开(公告)号:CN116227474B
公开(公告)日:2023-08-25
申请号:CN202310514835.8
申请日:2023-05-09
Applicant: 之江实验室
IPC: G06F40/247 , G06N20/00
Abstract: 本说明书公开了一种对抗文本的生成方法、装置、存储介质及电子设备,包括:获取用于生成对抗文本的各原始文本,根据预先训练的第一语言模型,确定各原始文本的特征向量,并对各原始文本聚类,得到指定数量的文本簇。然后,从各文本簇中确定代表文本,再确定各代表文本对应的初始对抗文本。然后,根据确定出的代表文本的原始关键词和初始对抗关键词之间的差异,从预设的各思维链提示模板中,确定目标思维链提示模板。之后,根据代表文本和代表文本的初始对抗文本,采用目标思维链提示模板,生成思维链提示文本。将思维链提示文本输入预先训练的第二语言模型,得到目标对抗文本。可以更加灵活地生成对抗文本,减少对抗文本的生成成本。
-
公开(公告)号:CN116542224A
公开(公告)日:2023-08-04
申请号:CN202310801935.9
申请日:2023-07-03
Applicant: 之江实验室
IPC: G06F40/157 , G06F40/242 , G06F40/126 , G06F16/33 , G06N3/0464 , G06N3/084
Abstract: 本申请涉及一种Office文档异常检测方法、装置及可读存储介质,该方法包括:基于待检测Office文档运行时产生的系统调用信息,获取操作码序列;基于预先获取的数据字典,将所述操作码序列转换为灰度图;将所述灰度图输入训练完毕的文档异常检测模型,确定所述待检测Office文档是否异常,通过对操作信息的提取和整合并输入文档异常检测模型,得到该Office文档是否存在异常安全风险的结论,避免了模型输入信息长度受限导致的信息丢失,解决了相关技术中存在的通过神经网络模型进行Office文档异常检测准确性较低的问题。
-
公开(公告)号:CN115860281A
公开(公告)日:2023-03-28
申请号:CN202310170296.0
申请日:2023-02-27
Applicant: 之江实验室
IPC: G06Q10/04 , G06Q50/06 , G06N3/0442 , G06N3/045 , G06F18/211 , H02J3/00
Abstract: 本发明公开了一种基于跨实体注意力的能源系统多实体负载预测方法和装置,该方法包括以下步骤:首先对数据预处理,采用特征变量选择网络预测各个实体对特征的依赖性,并通过长短期记忆网络提取时间依赖信息;然后对实体编码;其次使用通过键值查询不同实体间的注意力,以对实体间的相互作用进行编码计算跨实体注意力;再将特征编码输出为负载预测值;通过以上步骤对负载预测网络模型进行训练学习,以获取最终的负载预测网络模型;最后将新的输入特征变量输入负载预测网络模型,即可获取负载预测值。本发明能够高效地对实体的时间特征进行建模并模拟实体间的相关性,量化一个时间窗口内多个实体之间的相关性,大幅提高各个实体负载预测的准确度。
-
-
-
-
-
-
-
-
-