一种基于拟态结构动态防御的模型训练方法及装置

    公开(公告)号:CN117576522B

    公开(公告)日:2024-04-26

    申请号:CN202410076456.X

    申请日:2024-01-18

    Abstract: 本说明书公开了一种基于拟态结构动态防御的模型训练方法及装置。所述任务执行方法包括:获取预训练模型,将训练预训练模型所使用的第一图像输入到预训练模型中,得到第一图像对应的识别结果。根据第一图像对应的识别结果以及第一图像对应的实际标签,确定出第二图像。将第二图像输入到预训练模型中,以通过预训练模型中的权重网络层,确定预训练模型中设置的各子识别网络对应的权重,以及通过每个子识别网络,分别对第二图像进行识别,得到各识别结果,并根据确定出的各子识别网络对应的权重,对各识别结果进行加权,得到最终识别结果,以最小化最终识别结果与实际标签之间的偏差为优化目标,对预训练模型进行训练。

    一种图像文本双端迁移攻击方法、装置和介质

    公开(公告)号:CN116523032B

    公开(公告)日:2023-09-29

    申请号:CN202310235411.8

    申请日:2023-03-13

    Abstract: 本发明公开了一种图像文本双端迁移攻击方法、装置和介质,该方法的步骤包括分析攻击目标模型、本地替代模型训练、对抗样本生成和对抗样本迁移,其中,分析攻击目标模型,即对比语言图像预训练模型,其可以接受图像与文本两端输入,之后根据输出向量的相似度进行结果预测;本地替代模型训练为根据目标模型的骨干网络训练替代模型,用于迁移攻击;对抗样本生成为对本地替代模型的进行攻击,进而获得图像和文本的对抗样本;对抗样本迁移为对抗样本输入对比语言图像预训练模型,最终导致网络无法正常工作,网络预测分类错误。本发明从图像和文本两个输入端口进行攻击,同时在本地训练相关模型进行迁移攻击,大幅提高了攻击成功率。

    一种基于拟态结构动态防御的模型训练方法及装置

    公开(公告)号:CN117576522A

    公开(公告)日:2024-02-20

    申请号:CN202410076456.X

    申请日:2024-01-18

    Abstract: 本说明书公开了一种基于拟态结构动态防御的模型训练方法及装置。所述任务执行方法包括:获取预训练模型,将训练预训练模型所使用的第一图像输入到预训练模型中,得到第一图像对应的识别结果。根据第一图像对应的识别结果以及第一图像对应的实际标签,确定出第二图像。将第二图像输入到预训练模型中,以通过预训练模型中的权重网络层,确定预训练模型中设置的各子识别网络对应的权重,以及通过每个子识别网络,分别对第二图像进行识别,得到各识别结果,并根据确定出的各子识别网络对应的权重,对各识别结果进行加权,得到最终识别结果,以最小化最终识别结果与实际标签之间的偏差为优化目标,对预训练模型进行训练。

    一种图像文本双端迁移攻击方法、装置和介质

    公开(公告)号:CN116523032A

    公开(公告)日:2023-08-01

    申请号:CN202310235411.8

    申请日:2023-03-13

    Abstract: 本发明公开了一种图像文本双端迁移攻击方法、装置和介质,该方法的步骤包括分析攻击目标模型、本地替代模型训练、对抗样本生成和对抗样本迁移,其中,分析攻击目标模型,即对比语言图像预训练模型,其可以接受图像与文本两端输入,之后根据输出向量的相似度进行结果预测;本地替代模型训练为根据目标模型的骨干网络训练替代模型,用于迁移攻击;对抗样本生成为对本地替代模型的进行攻击,进而获得图像和文本的对抗样本;对抗样本迁移为对抗样本输入对比语言图像预训练模型,最终导致网络无法正常工作,网络预测分类错误。本发明从图像和文本两个输入端口进行攻击,同时在本地训练相关模型进行迁移攻击,大幅提高了攻击成功率。

    一种代码漏洞检测方法、装置、介质及设备

    公开(公告)号:CN119939608A

    公开(公告)日:2025-05-06

    申请号:CN202510423675.5

    申请日:2025-04-07

    Abstract: 本申请公开了一种代码漏洞检测方法、装置、介质及设备,在获取到样本代码集后,可以识别出样本代码集中包含的各样本代码中的注释信息并删除,得到各脱敏代码,然后,按照预设的调整策略,对每个脱敏代码进行调整,得到与脱敏代码的代码标识相同的至少一个增强代码,后续通过将属于同一代码标识的各代码片段进行组合,可以得到一个代码标识所对应的多个复合代码,进而通过这些复合代码,构建测评集,以通过测评集,对漏洞检测模型进行调整,并通过调整后的漏洞检测模型进行代码漏洞检测,进而在后续的实际应用中,可以显著的提升漏洞检测模型的识别准确性。

    一种安全代码生成模型的训练方法及装置

    公开(公告)号:CN117369783B

    公开(公告)日:2024-02-23

    申请号:CN202311665188.7

    申请日:2023-12-06

    Abstract: 在本说明书提供的一种安全代码生成模型的训练方法及装置中,根据第一业务需求指令与第一安全代码,确定思维链提示文本,以及将安全提示词、第二业务需求指令以及该思维链提示文本,输入安全代码生成模型,生成第二安全代码。根据第二业务需求指令,通过该安全代码生成模型,生成业务代码,根据该业务代码与该第二安全代码的差异,确定损失,并以损失最小为优化目标训练该安全代码生成模型。通过引入思维链提示文本,使生成的第二安全代码兼顾了安全风险,及以该第二安全代码与业务代码的损失最小为优化目标训练模型,使训练完的安全代码生成模型仅根据业务需求指令,就可生成满足该业务需求且兼顾安全风险的安全代码,节约了代码开发的成本。(56)对比文件张晶;黄小锋.基于业务模型和界面模型的代码生成工具.电脑与信息技术.2016,(第02期),全文.

    一种对抗文本的生成方法、装置、存储介质及电子设备

    公开(公告)号:CN116227474B

    公开(公告)日:2023-08-25

    申请号:CN202310514835.8

    申请日:2023-05-09

    Abstract: 本说明书公开了一种对抗文本的生成方法、装置、存储介质及电子设备,包括:获取用于生成对抗文本的各原始文本,根据预先训练的第一语言模型,确定各原始文本的特征向量,并对各原始文本聚类,得到指定数量的文本簇。然后,从各文本簇中确定代表文本,再确定各代表文本对应的初始对抗文本。然后,根据确定出的代表文本的原始关键词和初始对抗关键词之间的差异,从预设的各思维链提示模板中,确定目标思维链提示模板。之后,根据代表文本和代表文本的初始对抗文本,采用目标思维链提示模板,生成思维链提示文本。将思维链提示文本输入预先训练的第二语言模型,得到目标对抗文本。可以更加灵活地生成对抗文本,减少对抗文本的生成成本。

Patent Agency Ranking