-
公开(公告)号:CN119443093A
公开(公告)日:2025-02-14
申请号:CN202510050672.1
申请日:2025-01-13
Applicant: 之江实验室
IPC: G06F40/279 , G06V30/19 , G06V10/774
Abstract: 本发明提出了一种基于大型语言模型的酶活参数抽取方法与系统,属于文本信息处理和数据挖掘领域。本发明通过OCR技术将PDF格式文献转换为Markdown格式,随后利用大型语言模型结合优化的提示词自动提取关键数据;自动提取流程经过严格的提示词优化和后处理操作,确保数据的准确性和一致性;然后通过精确度和召回率验证自动提取的有效性,最终生成的酶数据库可供后续的研究和分析使用。本发明通过结合OCR技术与大型语言模型,突破了现有手动数据提取的局限,显著提升了文献解析和数据提取的自动化程度;通过提示词工程和优化的提示词设计,实现了复杂文献中的结构化数据自动提取,特别是对于酶动力学参数的精确识别和提取。
-
公开(公告)号:CN119876474A
公开(公告)日:2025-04-25
申请号:CN202510255060.6
申请日:2025-03-05
Applicant: 之江实验室
IPC: C12Q1/6895 , C12N15/11
Abstract: 本发明公开了一种与大豆株高显著关联的单核苷酸突变位点SNP、KASP标记及其应用。该SNP分子标记位于大豆第5染色体36108741bp位置,碱基为T或C,与大豆株高表型显著相关,位点基因型为TT的大豆品种的株高显著低于基因型为CC的大豆品种;依据此SNP位点开发三条KASP引物,分别为SEQ ID NO.1、SEQ ID NO.2和SEQ ID NO.3,利用该引物对待测大豆进行PCR扩增和基因分型,若检测结果显示此标记位置碱基类型为T,则判定该大豆品种株高较矮;若检测结果为C,则判定株高较高。本发明的SNP分子标记可以作为大豆育种过程中株高性状的辅助选择标记,提高选择的准确性,加快大豆株高性状相关育种过程。
-
公开(公告)号:CN117058492B
公开(公告)日:2024-02-27
申请号:CN202311322535.6
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/09 , G06N5/04
Abstract: 一种基于学习解耦的两阶段训练病害识别方法和系统,其方法包括:步骤S1:采集待识别作物的图像样本,制作训练数据集;步骤S2:构造基于学习解耦的分类算法网络模型;步骤S3:对基于学习解耦的分类算法模型进行一阶段训练;步骤S4:固定部分权重,对基于学习解耦的分类算法模型进行二阶段训练;步骤S5:基于训练得到的基于学习解耦的分类算法模型进行推理,最终得到待分类目标叶片的病害种类和病害等级。本发明具有准确度高,标注成本极低,且可实现单模型对病害种类和病害等级进行细分类识别。
-
公开(公告)号:CN120060539A
公开(公告)日:2025-05-30
申请号:CN202510255061.0
申请日:2025-03-05
Applicant: 之江实验室
IPC: C12Q1/6895 , C12N15/11
Abstract: 本发明公开了一种与大豆百粒重显著关联的单核苷酸突变位点SNP、KASP标记及其应用。该SNP分子标记位于大豆第15染色体40068386bp位置,碱基为C或T,与大豆百粒重表型显著相关,位点基因型为TT的大豆品种的百粒重显著低于基因型为CC的大豆品种;依据此SNP位点开发三条KASP引物,分别为SEQ ID NO.1、SEQ ID NO.2和SEQ ID NO.3,利用该引物对待测大豆进行PCR扩增和基因分型,若检测结果显示此标记位置碱基类型为T,则判定该大豆品种百粒重较小;若检测结果为C,则判定百粒重较大。本发明的SNP分子标记可以作为大豆育种过程中百粒重性状的辅助选择标记,提高选择的准确性,加快大豆百粒重性状相关育种过程。
-
公开(公告)号:CN117058492A
公开(公告)日:2023-11-14
申请号:CN202311322535.6
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/09 , G06N5/04
Abstract: 一种基于学习解耦的两阶段训练病害识别方法和系统,其方法包括:步骤S1:采集待识别作物的图像样本,制作训练数据集;步骤S2:构造基于学习解耦的分类算法网络模型;步骤S3:对基于学习解耦的分类算法模型进行一阶段训练;步骤S4:固定部分权重,对基于学习解耦的分类算法模型进行二阶段训练;步骤S5:基于训练得到的基于学习解耦的分类算法模型进行推理,最终得到待分类目标叶片的病害种类和病害等级。本发明具有准确度高,标注成本极低,且可实现单模型对病害种类和病害等级进行细分类识别。
-
-
-
-