-
公开(公告)号:CN114019766B
公开(公告)日:2024-03-26
申请号:CN202111266973.6
申请日:2021-10-28
IPC: G03F7/20
Abstract: 本发明公开一种利用千束独立可控PPI点阵进行高通量直写的装置,该装置主要包含激发光和抑制光两路光,激发光路包含核心元件数字微镜阵列DMD、微透镜阵列MLA和连续变形镜DM,抑制光路包括核心元件空间光调制器SLM。本发明利用微透镜阵列MLA产生千束激发光点阵,利用高速连续变形镜DM矫正系统波前像差,实现点阵分布均匀性和光斑质量的优化,利用数字微镜阵列DMD对点阵的开关、强度进行独立调控,抑制光路通过空间光调制器SLM产生四束光,四束光在物镜焦平面干涉产生的点阵暗斑用于涡旋抑制光,与激发光点阵在物镜焦平面重合后形成千束PPI点阵,可实现大面积复杂三维结构的超分辨高通量灵活刻写。
-
公开(公告)号:CN114077168A
公开(公告)日:2022-02-22
申请号:CN202210009224.3
申请日:2022-01-06
Applicant: 之江实验室
Abstract: 本发明涉及光学技术领域,具体公开了一种基于光镊微球的超分辨激光直写与实时成像方法和装置,包括激光器、准直扩束系统、空间光调制器、4f缩束系统、二向色镜、显微物镜、微球、直写基底、三维可控精密位移台、照明光源、照明模块及相机等,所述的激光器出射光经过扩束准直后入射到加载有相位全息图的空间光调制器上面,调制后的光斑经过4f缩束系统入射到显微物镜,在显微物镜焦面形成聚焦光斑阵列同时捕获多个微球,利用微球强聚焦特性配合相位全息图变化,在直写基底上面进行任意图案的高通量超分辨激光直写;同时,微球结合显微物镜可对超分辨激光直写结构进行实时成像,图像由相机采集,实现基于光镊微球的超分辨激光直写与实时成像。
-
公开(公告)号:CN114019763A
公开(公告)日:2022-02-08
申请号:CN202111120476.5
申请日:2021-09-24
IPC: G03F7/20
Abstract: 本发明公开了一种基于万束独立可控激光点阵产生的并行直写装置,装置主要包含四个相同光路,每个光路包含核心元件数字微镜阵列DMD和微透镜阵列MLA,用于产生千束独立可控刻写点阵,光路中DMD将有效像素区域等分成M×N个子阵列,一个子阵列对应一个子光斑,从DMD出射的M×N子光斑与MLA的M×N微透镜空间上重合后,产生M×N千束焦点阵列,并最终成像到物镜焦平面上,通过四个千束点阵的拼接,最终实现万束刻写点阵的产生,能够快速加工高质量复杂三维微结构,可应用于超分辨光刻等领域。
-
公开(公告)号:CN116719209A
公开(公告)日:2023-09-08
申请号:CN202310709968.0
申请日:2023-06-15
Abstract: 本发明公开了一种基于马来酰亚胺的自引发双光子光刻胶及其图案化方法。所述基于马来酰亚胺的自引发双光子光刻胶含有100份的马来酰亚胺化合物、10‑30份的丙烯酸多环戊烯基酯和20‑50份的高折射率芴系活性交联剂。本发明的基于马来酰亚胺的自引发双光子光刻胶避免了常规双光子引发剂的使用,从而可以避免普通光刻胶中残留的光引发剂及光解碎片存在着迁移渗透和进一步光化学反应的可能;丙烯酸多环戊烯基酯的阻氧效应可以保证光刻胶在空气中正常使用;而高折射率芴系活性交联剂则可以有效调节光刻胶的折射率以提升刻写效果。该光刻胶经飞秒激光刻写、显影后,能够得到特征尺寸在百纳米级的二维线条,也能够刻写出数百微米的三维结构。
-
公开(公告)号:CN114895535B
公开(公告)日:2022-12-02
申请号:CN202210817874.0
申请日:2022-07-13
IPC: G03F7/20
Abstract: 本发明公开了一种基于双步吸收效应与STED原理的超分辨光刻方法,对于含有特殊光引发剂的光刻胶,使用两束不同波长的光源照射光刻胶,第一束激光以聚焦实心斑照射到光刻胶,利用聚焦实心斑与该光刻胶发生双步吸收作用使得光刻胶聚合固化;第二束激光为聚焦空心斑,且与第一束激光的三维中心对准,使得两束光边缘重合区域的光刻胶不发生聚合固化,通过控制两束光的相对能量,从而实现亚衍射极限2D及3D结构刻写,刻写最小精度可达亚50nm。
-
公开(公告)号:CN114779591B
公开(公告)日:2022-10-21
申请号:CN202210717492.0
申请日:2022-06-23
IPC: G03F7/20
Abstract: 本发明公开了一种基于双色双步吸收效应的超分辨光刻方法,该方法基于苯偶酰光引发剂基态与三重态的光谱吸收特性,利用一束材料基态吸收范围波长的激光束与另一束材料三重态吸收范围波长的激光束共同作用于材料中,通过控制两者的能量实现双色双步吸收效应,并且结合两者的相对位移控制,从而获得小于衍射极限的刻写线宽。本发明将提供一种亚百纳米精度刻写精度与快速刻写能力的超分辨纳米激光直写方法,使三维光刻直写技术具有高速、超分辨、复杂结构刻写能力的优点。
-
公开(公告)号:CN114895535A
公开(公告)日:2022-08-12
申请号:CN202210817874.0
申请日:2022-07-13
IPC: G03F7/20
Abstract: 本发明公开了一种基于双步吸收效应与STED原理的超分辨光刻方法,对于含有特殊光引发剂的光刻胶,使用两束不同波长的光源照射光刻胶,第一束激光以聚焦实心斑照射到光刻胶,利用聚焦实心斑与该光刻胶发生双步吸收作用使得光刻胶聚合固化;第二束激光为聚焦空心斑,且与第一束激光的三维中心对准,使得两束光边缘重合区域的光刻胶不发生聚合固化,通过控制两束光的相对能量,从而实现亚衍射极限2D及3D结构刻写,刻写最小精度可达亚50nm。
-
公开(公告)号:CN117055297A
公开(公告)日:2023-11-14
申请号:CN202310820298.X
申请日:2023-07-05
Abstract: 本发明公开了一种基于光学/化学三维暗斑的超分辨激光直写方法和装置。本发明使用三束激光,分别以实心斑和空心斑聚焦照射光刻胶,三束光在三维空间中心对准,利用光引发剂的STED特性以及抑制剂对自由基扩散的限制,从而在光刻胶中获得最小达到亚50nm线宽,最小周期可到亚100nm。相比于已有的技术,本发明通过抑制边缘聚合,抑制剂阻止自由基扩散,进一步减小线宽,提高刻写精度、分辨率,本发明有望在传感器件、超材料、掩膜版制备等方面获得应用。
-
公开(公告)号:CN114779591A
公开(公告)日:2022-07-22
申请号:CN202210717492.0
申请日:2022-06-23
Applicant: 之江实验室
IPC: G03F7/20
Abstract: 本发明公开了一种基于双色双步吸收效应的超分辨光刻方法,该方法基于苯偶酰光引发剂基态与三重态的光谱吸收特性,利用一束材料基态吸收范围波长的激光束与另一束材料三重态吸收范围波长的激光束共同作用于材料中,通过控制两者的能量实现双色双步吸收效应,并且结合两者的相对位移控制,从而获得小于衍射极限的刻写线宽。本发明将提供一种亚百纳米精度刻写精度与快速刻写能力的超分辨纳米激光直写方法,使三维光刻直写技术具有高速、超分辨、复杂结构刻写能力的优点。
-
公开(公告)号:CN114355621A
公开(公告)日:2022-04-15
申请号:CN202210262638.7
申请日:2022-03-17
Abstract: 本发明公开了一种基于面阵探测器和艾里斑细分的多焦点非标记差分超分辨成像方法与装置,激光器发出的光被偏振分光镜分为偏振方向互相垂直的两束光,两束光分别被SLM的左右两个半屏加载的相位掩膜调制,两束光分别为实心光束和空心光束;之后实心光束和空心光进行合束,合束后的光束再被分为第一子光束和第二子光束,分别包含实心光束和空心光束,以一定角度入射到扫描振镜模块,并被物镜聚焦,形成第一焦斑组合和第二焦斑组合,从而在焦面上形成四个焦斑。基于时域转化为空域的方法,使用面阵探测器代替单点探测器,在相对较低成本下,可以实现对艾里斑4进行40个以上探测器的细分。同时,采用多焦点激发,进一步提升了系统的成像效率。
-
-
-
-
-
-
-
-
-