基于MPI+X的DSMC并行计算方法、设备及介质

    公开(公告)号:CN113791912A

    公开(公告)日:2021-12-14

    申请号:CN202111333599.7

    申请日:2021-11-11

    Abstract: 本发明公开了一种基于MPI+X的DSMC并行计算方法、设备及介质,其中方法包括以下步骤:根据计算的节点数目和节点内可用CPU核数对网格进行分区,将其划分为多个独立的分区文件;初始化MPI即粗粒度多进程,各进程载入网格数据;各进程对载入的所述网格数据分别进行相应的预处理;各进程分别启用多线程并行计算各自分区内的粒子运动;各进程分别对各自分区内的粒子索引进行排序编号;各进程分别对各自分区内的粒子进行碰撞计算;各进程分别对各自的子区域流场性质进行采样;迭代步数如果达到阈值,则进行相应的后处理并输出结果文件。本发明将粗粒度多进程与细粒度多线程有效结合,可以大大减少通信量和通信次数,有效提升并行效率。

    基于MPI+X的DSMC并行计算方法、设备及介质

    公开(公告)号:CN113791912B

    公开(公告)日:2022-02-11

    申请号:CN202111333599.7

    申请日:2021-11-11

    Abstract: 本发明公开了一种基于MPI+X的DSMC并行计算方法、设备及介质,其中方法包括以下步骤:根据计算的节点数目和节点内可用CPU核数对网格进行分区,将其划分为多个独立的分区文件;初始化MPI即粗粒度多进程,各进程载入网格数据;各进程对载入的所述网格数据分别进行相应的预处理;各进程分别启用多线程并行计算各自分区内的粒子运动;各进程分别对各自分区内的粒子索引进行排序编号;各进程分别对各自分区内的粒子进行碰撞计算;各进程分别对各自的子区域流场性质进行采样;迭代步数如果达到阈值,则进行相应的后处理并输出结果文件。本发明将粗粒度多进程与细粒度多线程有效结合,可以大大减少通信量和通信次数,有效提升并行效率。

    一种基于线程并行的结构化网格流线积分方法

    公开(公告)号:CN112948643A

    公开(公告)日:2021-06-11

    申请号:CN202110520617.6

    申请日:2021-05-13

    Abstract: 本发明提供一种基于线程并行的结构化网格流线积分方法,包括:步骤1、对多块结构化网格进行数据块的重划分;步骤2、对于重划分后的每一个数据块,计算其属性数据的类型和数目;步骤3、反馈步骤2的计算结果,把数据块中的每一种类型的属性数据提取出来单独存储;步骤4、在进行三维矢量场流线可视化过程中,将需要的属性数据使用多线程进行并行读取;步骤5、使用读取的属性数据构建动态搜索树;步骤6、读取动态搜索树中计算种子点数,根据计算种子点的任务规模进行动态分组,再将分组后的计算种子点数分配给多线程并行积分计算;步骤7、将计算结果用于后续的可视化工作。本发明能够提高多核处理器利用率、加速科学可视化中流线积分。

    一种基于线程并行的结构化网格流线积分方法

    公开(公告)号:CN112948643B

    公开(公告)日:2021-08-06

    申请号:CN202110520617.6

    申请日:2021-05-13

    Abstract: 本发明提供一种基于线程并行的结构化网格流线积分方法,包括:步骤1、对多块结构化网格进行数据块的重划分;步骤2、对于重划分后的每一个数据块,计算其属性数据的类型和数目;步骤3、反馈步骤2的计算结果,把数据块中的每一种类型的属性数据提取出来单独存储;步骤4、在进行三维矢量场流线可视化过程中,将需要的属性数据使用多线程进行并行读取;步骤5、使用读取的属性数据构建动态搜索树;步骤6、读取动态搜索树中计算种子点数,根据计算种子点的任务规模进行动态分组,再将分组后的计算种子点数分配给多线程并行积分计算;步骤7、将计算结果用于后续的可视化工作。本发明能够提高多核处理器利用率、加速科学可视化中流线积分。

Patent Agency Ranking