一种眼前节图像的晶体区域的检测方法及装置

    公开(公告)号:CN108230287A

    公开(公告)日:2018-06-29

    申请号:CN201611190048.9

    申请日:2016-12-21

    Abstract: 本发明提供了一种眼前节图像的晶体区域的检测方法及装置,该方法包括:获取眼前节图像,并去除所述眼前节图像中的皮肤区域,获得第一图像;采用预先训练的眼前节图像的皮肤反光模型,去除所述第一图像中的皮肤反光区域,获得第二图像;采用预先训练的主动形状模型对所述第二图像进行晶体检测,获得晶体区域。因此,本发明的方案,通过去除眼前节图像中的皮肤区域和皮肤反光区域,从而避免利用主动形状模型对眼前节图像进行晶体检测时,陷入极小值,进而使得用于进行晶体检测的眼前节图像不再局限于只包括晶体部分。

    睡眠阶段分期方法及装置

    公开(公告)号:CN108143409B

    公开(公告)日:2021-01-22

    申请号:CN201611109883.5

    申请日:2016-12-06

    Abstract: 本发明实施例公开了一种睡眠阶段分期方法及装置,所述方法包括:采集状态信号,其中,所述状态信号至少包括:脑电信号及眼电信号;对所述状态信号进行时域幅值滤波,去除时域干扰,并对所述状态信号进行频域小波滤波,去除频域干扰;利用亨杰斯Hjorth参数确定所述脑电信号的时域特征;对所述脑电信号进行时频变换,获得所述睡眠信号的时频域特征;确定所述脑电信号的复杂度;提取所述眼电信号的频率变化信息;结合所述时域特征、所述时频域特征、所述复杂度及所述频率变化信息,确定当前所在的睡眠阶段;将从多个维度提取状态信号的特征,从而增加了判断的精确性,同时相对于现有技术还具有计算复杂度低的特点。

    一种图像处理模型的确定方法及其相关装置

    公开(公告)号:CN109447937A

    公开(公告)日:2019-03-08

    申请号:CN201710754656.6

    申请日:2017-08-29

    Abstract: 本发明公开了一种图像处理模型的确定方法及其相关装置,首先,采用训练样本数据对深度学习卷积网络训练,得到初始的图像处理模型;之后,根据初始的图像处理模型确定训练样本数据中的稀有样本数据,并在训练样本数据中提升稀有样本数据的出现频率;最后,采用提升稀有样本数据的出现频率后的训练样本数据,对深度学习卷积网络重新训练,得到第一优化的图像处理模型。通过筛选出稀有样本数据并对其样本量进行扩充,使训练样本数据涵盖更多的数据变化条件,可以提高最后形成的图像处理模型对于稀有样本数据的分析精度。

Patent Agency Ranking