-
公开(公告)号:CN111225988B
公开(公告)日:2022-04-29
申请号:CN201880058273.8
申请日:2018-09-29
Applicant: 长沙有色冶金设计研究院有限公司 , 蒙古国欧绅工程有限责任公司 , 中国科学院过程工程研究所 , 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂
Inventor: 仝一喆 , 刘自亮 , 王恒辉 , 尹泽辉 , 罗虹霖 , 冯泽平 , 杨建平 , 刘刚 , 左小红 , 邓孟俐 , 谢冰 , 施耘 , 张克 , 陈龙义 , 吉红 , 何醒民 , 鹏苏格·巴图奥奇 , 阿拉腾苏和·道尔吉贡土布 , 巴彦巴策仁·恩赫宝鲁德 , 齐涛 , 孟凡成 , 陈德胜 , 王丽娜 , 于宏东 , 林裕安 , 刘野平 , 张登凯 , 徐克华 , 何磊
Abstract: 一种硫化铜精矿的氧压浸出方法及铜冶炼方法,先将硫化铜精矿加水磨制成矿浆;再将第一分散剂、第一沉矾剂、二段上清液和矿浆加入到高压釜中,进行一段氧压浸出,获得一段底流和一段上清液;然后将一段底流、废电积液、第二分散剂和第二沉矾剂加入到高压釜中,进行二段氧压浸出,获得二段上清液和二段浸出渣;向一段上清液中加入中和剂,获得中和上清液和中和渣,使用中和上清液电积铜。本方法在保证铜的高浸出率同时,控制浸出液中的铁及硫酸含量。
-
公开(公告)号:CN107543745A
公开(公告)日:2018-01-05
申请号:CN201610465836.8
申请日:2016-06-23
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种微细物料的冷镶制样方法。所述制样方法包括以下步骤:把复合树脂和复合固化剂按照一定比例混匀后,抽真空至混合物中无气泡,备用;按一定比例称取样品和分散剂,充分搅拌混匀后放入模具;再加入复合树脂与复合固化剂的混合物,搅匀;超声10分钟以上,超声后缓慢注入复合树脂与复合固化剂的混合物至对应刻度,常温静置12小时以上,直到树脂完全凝固;将固化完全的样品块从模具中取出,磨抛至100倍显微镜下无划痕。本发明的制样方法解决了微细物料样品镶样过程中的团聚严重、样品脱落、气孔多、样品发脆易碎的问题,为微细物料样品的冷镶制样提供了一条途径。
-
公开(公告)号:CN105110380A
公开(公告)日:2015-12-02
申请号:CN201510519068.5
申请日:2015-08-21
Applicant: 中国科学院过程工程研究所
IPC: C01G49/06
Abstract: 本发明属于湿法冶金领域,具体涉及含钙镁氯化亚铁溶液制备颜料级Fe2O3的方法。主要包括以下步骤:将含钙镁的氯化亚铁溶液调节pH值3.0~6.0后过滤除杂质,将过滤后含钙镁的氯化亚铁溶液的浓度调节至100~200g/L,浓缩(稀释)液经喷雾干燥得到含1~2个结晶水的氯化亚铁干粉;干粉经过煅烧、洗涤、干燥后得到具有颜料性能的Fe2O3产品。
-
公开(公告)号:CN116027712A
公开(公告)日:2023-04-28
申请号:CN202310039448.3
申请日:2023-01-12
Applicant: 中国科学院赣江创新研究院 , 中国科学院过程工程研究所
IPC: G05B19/042
Abstract: 本发明提供了一种稀土富集物、锆冶炼废酸中稀土的提取方法及其应用,所述提取方法包括:通过第一调节使锆冶炼废酸的pH为4~4.8,第一固液分离后得到提取液,通过第二调节使所述提取液的pH为9~11,第二固液分离后得到稀土富集物。本发明提供的提取方法的工艺流程较短、工艺简单、不引入新的磷酸根等杂质、无需萃取除铁、锆钛铁铝与稀土的分离效率高且得到的稀土富集物杂质含量低,所述提取方法具有较高经济优势和应用前景。本发明中得到的稀土富集物可通过酸法浸出得到杂质含量低且稀土浓度高的稀土浸出液,与现有的稀土冶炼流程直接衔接,进行稀土分离等操作,从而实现资源的最大化利用。
-
公开(公告)号:CN109975384B
公开(公告)日:2021-03-09
申请号:CN201711454345.4
申请日:2017-12-28
Applicant: 中国科学院过程工程研究所
IPC: G01N27/626 , G01N1/28
Abstract: 本发明提供了一种检测岩石中金属分布率的方法,包括:岩石样品制备光片、薄片或探针片,然后镀膜;利用矿物学自动分析仪器测量岩石中矿物的质量百分含量;利用激光剥蚀电感耦合等离子体质谱仪测量矿物中金属元素M的质量含量,单位为ppm;根据式1计算岩石中金属元素M的品位,式1为:岩石中金属元素M的品位=(∑γi×βi×10‑4)×100%,i=1,2,…,n,式中i代表岩石中第i种矿物,γi代表岩石中第i种矿物的质量百分含量,βi代表第i种矿物中金属元素M的质量含量(ppm);根据式2计算金属元素M在岩石中的金属分布率,式2为:金属元素M在第i种矿物中的金属分布率=(γi×βi×10‑4÷岩石中铷的品位)×100%。本发明为元素地球化学、岩石学和矿物学研究提供了新的方法。
-
公开(公告)号:CN107543745B
公开(公告)日:2020-11-24
申请号:CN201610465836.8
申请日:2016-06-23
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种微细物料的冷镶制样方法。所述制样方法包括以下步骤:把复合树脂和复合固化剂按照一定比例混匀后,抽真空至混合物中无气泡,备用;按一定比例称取样品和分散剂,充分搅拌混匀后放入模具;再加入复合树脂与复合固化剂的混合物,搅匀;超声10分钟以上,超声后缓慢注入复合树脂与复合固化剂的混合物至对应刻度,常温静置12小时以上,直到树脂完全凝固;将固化完全的样品块从模具中取出,磨抛至100倍显微镜下无划痕。本发明的制样方法解决了微细物料样品镶样过程中的团聚严重、样品脱落、气孔多、样品发脆易碎的问题,为微细物料样品的冷镶制样提供了一条途径。
-
公开(公告)号:CN109975384A
公开(公告)日:2019-07-05
申请号:CN201711454345.4
申请日:2017-12-28
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种检测岩石中金属分布率的方法,包括:岩石样品制备光片、薄片或探针片,然后镀膜;利用矿物学自动分析仪器测量岩石中矿物的质量百分含量;利用激光剥蚀电感耦合等离子体质谱仪测量矿物中金属元素M的质量含量,单位为ppm;根据式1计算岩石中金属元素M的品位,式1为:岩石中金属元素M的品位=(∑γi×βi×10‑4)×100%,i=1,2,…,n,式中i代表岩石中第i种矿物,γi代表岩石中第i种矿物的质量百分含量,βi代表第i种矿物中金属元素M的质量含量(ppm);根据式2计算金属元素M在岩石中的金属分布率,式2为:金属元素M在第i种矿物中的金属分布率=(γi×βi×10‑4÷岩石中铷的品位)×100%。本发明为元素地球化学、岩石学和矿物学研究提供了新的方法。
-
公开(公告)号:CN106222349B
公开(公告)日:2018-10-19
申请号:CN201610856794.0
申请日:2016-09-28
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种利用熔池熔炼炉处理含铁原料的方法及装置,将含铁原料与还原剂混合,加入熔池熔炼炉内,向熔池内鼓入富氧,在温度1200‑1600℃的条件下熔炼。本发明与传统“烧结/球团—高炉冶炼”或“转底炉还原—电炉熔分”流程相比,具有流程短、原料适应性强、产品质量高、能耗低、污染小等显著优点,可望为高效综合利用含铁资源提供新的技术方向,具有广阔的应用前景。
-
公开(公告)号:CN107963656A
公开(公告)日:2018-04-27
申请号:CN201711212175.9
申请日:2017-11-27
Applicant: 中国科学院过程工程研究所
IPC: C01G23/047
Abstract: 一种利用混合酸分解钛渣制备颜料级二氧化钛的方法,包括以下步骤:(1)将包含硫酸和盐酸的混合酸与钛渣混合酸解,过滤后得到粗钛液和残渣;(2)调整步骤(1)得到的粗钛液中钛、酸和杂质的浓度以利于水解,得到精钛液;(3)将步骤(2)得到的精钛液水解,过滤、除杂后得到精偏钛酸;(4)对步骤(3)得到的精偏钛酸进行盐处理后,将偏钛酸煅烧制备颜料级锐钛型或金红石型二氧化钛。该方法具有资源利用率高、工业易实施和环境友好等优点。
-
公开(公告)号:CN106854702A
公开(公告)日:2017-06-16
申请号:CN201510903560.2
申请日:2015-12-09
Applicant: 中国科学院过程工程研究所
CPC classification number: C22B34/22 , C01G23/04 , C01G23/047 , C01G31/00 , C21B11/00 , C21B15/00 , C22B34/1204
Abstract: 本发明涉及一种一步转化分离钒钛铁精矿中铁、钒和钛新方法,包括以下步骤:(1)将钒钛铁精矿和添加剂与还原剂混合焙烧,获得含钒生铁和富钒钛料;(2)将富钒钛料在水中浸出、过滤,获得含钒溶液与钛渣。本发明的技术特点在于:通过钠化还原耦合新工艺,构建低温熔态多相反应分离新体系,一步实现铁的还原、钒的钠化及铁与富钒钛渣的熔分过程,产出含钒生铁、含钒溶液和钛渣三种产品。本发明与传统的“高炉—转炉”或“直接还原—熔分/磨选”流程相比,具有工艺流程短、固定资产投资省、生产成本低、环境污染小、综合回收率高等显著优点,为高效综合利用钒钛铁矿资源提供了新技术,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-