基于实体对齐的多源异构知识图谱协同推理方法及装置

    公开(公告)号:CN112818137B

    公开(公告)日:2022-04-08

    申请号:CN202110416650.4

    申请日:2021-04-19

    Abstract: 本发明提供一种基于实体对齐的多源异构知识图谱协同推理方法及装置,所述方法包括:基于待推理实体对,以及待推理实体对的查询关系,确定查询关系的等价关系路径;将各等价关系路径对应的特征向量输入至关系推理模型,得到查询关系对应的推理结果。本发明中用于训练关系推理模型的正样本三元组是从多个知识图谱中获取的,同时等价关系路径包括跨知识图谱的等价关系路径,实现了不同知识图谱之间的连通,从而关系推理模型能够学习多个知识图谱中的语义信息,避免传统方法中针对单一知识图谱进行知识推理造成推理精度较低的问题。

    融合结构、属性和关系信息的实体对齐方法和系统

    公开(公告)号:CN112445876B

    公开(公告)日:2023-12-26

    申请号:CN202011484523.X

    申请日:2020-12-16

    Abstract: 本发明属于信息处理领域,具体涉及一种融合结构、属性和关系信息的实体对齐方法和系统,旨在解决现有实体对齐方法并不能很好地整合结构、属性和关系信息从而限制了实体对齐的效果的问题。本发明方法包括迭代的以下步骤:利用对齐种子集合S,获取各实体的结构向量,并编码其属性向量;进行关系对齐,获得对应的关系向量;基于实体的结构向量、属性向量、关系向量,通过注意力网络获得实体相似性矩阵;基于矩阵查询标记法预测对齐实体,将置信度大于给定阈值的预测实体对构成的集合作为高置信度预测对齐实体集合S′;若S∩S′=S′,则结束迭代,输出对齐种子集合S;否则,S=S0∪S′继续迭代。本发明可以有效提升实体对齐的性能。

    基于实体对齐的多源异构知识图谱协同推理方法及装置

    公开(公告)号:CN112818137A

    公开(公告)日:2021-05-18

    申请号:CN202110416650.4

    申请日:2021-04-19

    Abstract: 本发明提供一种基于实体对齐的多源异构知识图谱协同推理方法及装置,所述方法包括:基于待推理实体对,以及待推理实体对的查询关系,确定查询关系的等价关系路径;将各等价关系路径对应的特征向量输入至关系推理模型,得到查询关系对应的推理结果。本发明中用于训练关系推理模型的正样本三元组是从多个知识图谱中获取的,同时等价关系路径包括跨知识图谱的等价关系路径,实现了不同知识图谱之间的连通,从而关系推理模型能够学习多个知识图谱中的语义信息,避免传统方法中针对单一知识图谱进行知识推理造成推理精度较低的问题。

    融合结构、属性和关系信息的实体对齐方法和系统

    公开(公告)号:CN112445876A

    公开(公告)日:2021-03-05

    申请号:CN202011484523.X

    申请日:2020-12-16

    Abstract: 本发明属于信息处理领域,具体涉及一种融合结构、属性和关系信息的实体对齐方法和系统,旨在解决现有实体对齐方法并不能很好地整合结构、属性和关系信息从而限制了实体对齐的效果的问题。本发明方法包括迭代的以下步骤:利用对齐种子集合S,获取各实体的结构向量,并编码其属性向量;进行关系对齐,获得对应的关系向量;基于实体的结构向量、属性向量、关系向量,通过注意力网络获得实体相似性矩阵;基于矩阵查询标记法预测对齐实体,将置信度大于给定阈值的预测实体对构成的集合作为高置信度预测对齐实体集合S′;若S∩S′=S′,则结束迭代,输出对齐种子集合S;否则,S=S0∪S′继续迭代。本发明可以有效提升实体对齐的性能。

Patent Agency Ranking