-
公开(公告)号:CN110106188A
公开(公告)日:2019-08-09
申请号:CN201910452162.1
申请日:2019-05-28
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C12N15/29 , C12N15/82 , C07K14/415 , A01H5/00 , A01H6/54
Abstract: 本发明提供一种控制大豆类胡萝卜素含量的基因及其应用,属于基因工程技术领域。本发明的控制大豆类胡萝卜素含量的基因GmICC1的核苷酸序列如SEQ ID No.1所示或在此序列中经取代、缺失或添加一个或几个核苷酸且编码具有相同功能蛋白的序列。本发明发现GmICC1基因参与调控大豆的类胡萝卜素含量、ABA响应相关的胁迫反应及异黄酮含量,不仅可以提高大豆中的维生素A源等含量还能提高植株的抗性。GmICC1基因在植物育种和种质资源改良方面具有良好的应用前景。
-
公开(公告)号:CN117314755A
公开(公告)日:2023-12-29
申请号:CN202311605122.9
申请日:2023-11-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T3/40 , G06T5/00 , G06T7/00 , G06V20/70 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/0895
Abstract: 本发明公开了一种基于跨模态图像生成的多视角植株生成方法和装置,属于农业方面的图像处理领域,包括:采集植株图像并标注文本信息;基于图像和文本对文本图像映射模型进行训练微调并冻结,得到图像和文本的内嵌向量;基于图像和文本的内嵌向量,构建基于扩散模型的包含文本图像先验模块和图像编码器模块的图像生成模型并训练;实际推理阶段根据基因型‑表型预测模型得到的目标植株表型数据,引导图像生成模型生成多视角小图,并输入图像超分辨模块得到高分辨率的目标植株图像。本发明采用扩散模型构建图像生成模型和图像超分辨模块,能够实现生成效率高、可扩展性强且生成图像质量高的植株表型数据可视化图像预测,为可视育种提供支撑。
-
公开(公告)号:CN110759982A
公开(公告)日:2020-02-07
申请号:CN201911114741.1
申请日:2019-11-14
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C07K14/415 , C12N15/29 , C12N15/82 , A01H5/00 , A01H6/54
Abstract: 本发明涉及分子生物学技术领域,尤其涉及大豆角共生固氮脂多糖基因或其蛋白与应用。本发明研究表明,大豆共生固氮脂多糖基因突变,导致GmLBP6蛋白失活后,突变体的根瘤数比野生型的根瘤数显著增多,而对突变体进行GmLBP6基因的过表达则使根瘤数目恢复至与野生型一致。利用GmLBP6作为标志物,能够实现对植物种质,特别是大豆种质固氮能力的早期鉴定。
-
公开(公告)号:CN110698551A
公开(公告)日:2020-01-17
申请号:CN201911113850.1
申请日:2019-11-14
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C07K14/415 , C12N15/82 , A01H5/12 , A01H5/10 , A01H6/54 , C12Q1/6895 , G01N33/68
Abstract: 本发明涉及遗传育种技术领域,尤其涉及大豆生长素响应基因或其蛋白的应用。本发明研究表明,来源于大豆的生长素响应基因或其蛋白能够调控大豆豆荚或叶片发育,因此可以用于实现提高大豆产量。利用GmSP1作为标志物,能够实现对植物种质,特别是大豆种质丰产性能的鉴定。
-
公开(公告)号:CN106520783B
公开(公告)日:2019-06-28
申请号:CN201611130386.3
申请日:2016-12-09
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C12N15/29 , C12N15/11 , C07K14/415 , A01H5/00 , A01H6/54
Abstract: 本发明提供一种控制大豆叶柄夹角的GmLPA1基因,其核苷酸序列如SEQ ID NO.1所示。本发明还提供所述控制大豆叶柄夹角的GmLPA1基因编码的蛋白。本发明同时提供了控制大豆叶柄夹角的GmLPA1基因在调控植物株形中的应用。
-
公开(公告)号:CN117011316A
公开(公告)日:2023-11-07
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结构辨识的细粒度,实现精准精细的表型识别。
-
公开(公告)号:CN116721412A
公开(公告)日:2023-09-08
申请号:CN202310406872.7
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/68 , G06V10/82 , G06V10/774 , G06V10/776 , G06V10/40 , G06N3/0464 , G06N3/09
Abstract: 一种自下而上的基于结构性先验的豆荚关键点检测方法,自定义不同类型豆荚中豆粒的关键点含义,构建了包含主干网络、豆粒位置置信度热力图子网络、部位亲和域子网络、结构先验子网络四部分的自下而上的豆粒关键点检测网络,可实现先利用位置置信度检测得到所有的豆粒位置,然后结合部位亲和域积分计算,利用匈牙利算法得到豆粒之间的最优匹配连接关系,从而提取到豆荚的数量和豆荚的类型。特别的,在训练阶段通过添加结构先验子网络,提升模型的准确率。还包括一种自下而上的基于结构性先验的豆荚关键点检测系统。本发明从豆荚形态上确定豆荚类型,可快速同时检测多个豆荚,并定位得到豆荚中每个豆粒的位置。
-
公开(公告)号:CN117011316B
公开(公告)日:2024-02-06
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/11 , G06T7/00 , G06T5/70 , G06T3/4053 , G06T7/62
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结
-
公开(公告)号:CN110698551B
公开(公告)日:2021-06-08
申请号:CN201911113850.1
申请日:2019-11-14
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C07K14/415 , C12N15/82 , A01H5/12 , A01H5/10 , A01H6/54 , C12Q1/6895 , G01N33/68
Abstract: 本发明涉及遗传育种技术领域,尤其涉及大豆生长素响应基因或其蛋白的应用。本发明研究表明,来源于大豆的生长素响应基因或其蛋白能够调控大豆豆荚或叶片发育,因此可以用于实现提高大豆产量。利用GmSP1作为标志物,能够实现对植物种质,特别是大豆种质丰产性能的鉴定。
-
公开(公告)号:CN111454965A
公开(公告)日:2020-07-28
申请号:CN202010278803.9
申请日:2020-04-10
Applicant: 中国科学院东北地理与农业生态研究所
IPC: C12N15/29 , C12N15/82 , C07K14/415 , A01H5/12 , A01H6/54
Abstract: 本发明涉及基因工程技术领域,特别涉及GmLMM2基因在调控植物叶绿素合成及PCD中的应用。GmLMM2基因的核苷酸序列为如下序列之一:(a)如SEQ ID NO:1所示;(b)在SEQ ID NO:1所示的核苷酸序列中经取代、缺失或添加一个或几个核苷酸且具有同等功能的基因;(c)含SEQ ID NO:1所示的核苷酸序列或其片段的载体。本发明提供了控制大豆叶绿素合成及PCD的GmLMM2基因及其编码的蛋白,为进一步研究植物叶绿素合成及PCD调控的分子机理提供依据。GmLMM2基因具有控制叶绿素合成及PCD的功能,有望以此对植物光合和光保护能力进行调控,用以提高植物产量。
-
-
-
-
-
-
-
-
-