-
公开(公告)号:CN112071444B
公开(公告)日:2023-10-27
申请号:CN202010789758.3
申请日:2020-08-07
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院股份有限公司
Abstract: 本发明提供一种二氧化铀单晶/纳米金刚石核燃料芯块及其制备方法,包括以下步骤:S1、提供一种UO2单晶;S2、UO2单晶热处理;S3、UO2单晶涂层包覆:将UO2单晶颗粒过筛处理,选取一定粒径的UO2单晶颗粒,采用化学气相沉积的方法在UO2单晶颗粒表面涂覆一层热解炭涂层;S4、粉体混合:将步骤S3制备的包覆型UO2单晶颗粒、纳米金刚石粉体与烧结剂按照一定的体积比放入混料罐内密封混合;S5、装料;以及S6、致密化烧结:将压制好的模具进行放电等离子体快速烧结,即得。根据本发明提供的方法,明显改善了燃料芯块的热导率,进而提升了二氧化铀燃料芯块的安全性。
-
公开(公告)号:CN111916227B
公开(公告)日:2023-04-14
申请号:CN202010789730.X
申请日:2020-08-07
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院有限公司
Abstract: 本发明提供一种金属包覆燃料及其制备方法,该金属包覆燃料由内而外依次包括:核燃料核芯,疏松金属层以及致密金属层。该方法包括:S1:提供一种核燃料核芯,将其装入高温喷动床,通入氩气,使其处于流化状态;S2:改通入氢气或者氩气,或其混合气体,控制疏松金属层的前驱体在载气中的比例在5~10%V/V之间,从而在核燃料核芯表面包覆疏松金属层;S3:控制致密金属层的前驱体在载气中的比例在0.2~2%V/V之间,从而进一步包覆致密金属层;以及S4:停止通入前驱体,改通入氩气,降温,即得。根据本发明提供的金属包覆燃料具有导热性好、滞留裂变产物能力强、破损率低等优点,可有效提升核燃料安全性和经济性。
-
公开(公告)号:CN111916227A
公开(公告)日:2020-11-10
申请号:CN202010789730.X
申请日:2020-08-07
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院有限公司
Abstract: 本发明提供一种金属包覆燃料及其制备方法,该金属包覆燃料由内而外依次包括:核燃料核芯,疏松金属层以及致密金属层。该方法包括:S1:提供一种核燃料核芯,将其装入高温喷动床,通入氩气,使其处于流化状态;S2:改通入氢气或者氩气,或其混合气体,控制疏松金属层的前驱体在载气中的比例在5~10%V/V之间,从而在核燃料核芯表面包覆疏松金属层;S3:控制致密金属层的前驱体在载气中的比例在0.2~2%V/V之间,从而进一步包覆致密金属层;以及S4:停止通入前驱体,改通入氩气,降温,即得。根据本发明提供的金属包覆燃料具有导热性好、滞留裂变产物能力强、破损率低等优点,可有效提升核燃料安全性和经济性。
-
公开(公告)号:CN109900849A
公开(公告)日:2019-06-18
申请号:CN201910208911.6
申请日:2019-03-19
Applicant: 中国科学院上海应用物理研究所
IPC: G01N30/90
Abstract: 本发明提供一种凝胶相中有机添加剂降解效果的判定方法及系统,根据有机添加剂中是否包括多羟基聚合物,判定时采用不同步骤:当凝胶相中有机添加剂不包括多羟基聚合物时,判定步骤如下:S01,分别获取待评估凝胶相和对应的对比凝胶相的热解全二维色谱图;S02,判断待评估凝胶相总气相产物含量是否小于第一预设阈值;S03,当总气相产物含量小于第一预设阈值时,判定凝胶相中有机添加剂降解效果达标。本发明通过全二维气相色谱仪或全二维气质联用仪分析凝胶相中有机添加剂的热解气相产物的种类和含量,来考察降解方法对凝胶相中有机物含量的影响,从而提供了一种快速、有效的凝胶相中有机添加剂降解效果的判定方法及系统。
-
公开(公告)号:CN108059143A
公开(公告)日:2018-05-22
申请号:CN201711276211.8
申请日:2017-12-06
Applicant: 中国科学院上海应用物理研究所
IPC: C01B32/05
Abstract: 本发明涉及一种空心碳微球的制备方法,包括如下步骤:提供喷动床,其包括设置于高温加热元件中的床体,该床体具有内腔,该内腔的底部形成有气体入口;将模板核芯装入喷动床的内腔内;将惰性气体通过气体入口通入喷动床的内腔内使得模板核芯达到稳定的喷动状态,通过高温加热元件加热床体达到预设温度,将有机烃碳源和惰性气体的混合气通过气体入口通入喷动床的内腔内,使得有机烃碳源在高温下裂解以通过化学气相沉积在模板核芯上沉积多孔碳层;去除模板核芯得到空心碳微球。本发明还涉及由此获得的空心碳微球。根据本发明的空心碳微球的制备方法,将喷动床化学气相沉积方法用于制备空心碳微球,模板核芯较易去除,同时产品的各参数都较易控制。
-
公开(公告)号:CN119028617A
公开(公告)日:2024-11-26
申请号:CN202411114578.X
申请日:2024-08-14
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明公开一种用于基体石墨除水除氧的装置及方法,该装置包括:加热舱,内部设有加热元件和至少一个用于放置基体石墨的托盘;真空系统,用于抽出所述加热舱内的气体,以促进水分和氧气的去除;惰性气体供给气路系统,用于持续供气吹扫所述加热舱,并通过冷阱和载带去除水分和氧气;微量水氧测试系统,用于持续采样测量水氧含量;以及与加热舱相邻设置的存储箱,用于存储处理过后的基体石墨,防止基体石墨在存储过程中污染,并保持水氧含量在目标区间。根据本发明提供的方法能够在不损害基体石墨结构的前提下有效去除其中的水分和氧气,保证燃料元件在高温环境下的稳定性和安全性,特别适用于固态燃料熔盐堆等第四代核反应堆中的燃料元件制造。
-
公开(公告)号:CN117735987A
公开(公告)日:2024-03-22
申请号:CN202311488983.3
申请日:2023-11-09
Applicant: 中国科学院上海应用物理研究所
IPC: C04B35/50 , C04B35/622 , C04B35/64 , G21C21/16 , G21C3/62
Abstract: 本发明提供一种基于燃料颗粒的氢化钇基体燃料元件及其制备方法以及应用,包括:通过氢化方法将金属钇块制备成氢化钇块体;将氢化钇块体研磨成50~100μm氢化钇粉末,再将其与燃料颗粒和助烧剂混合均匀,燃料颗粒体积占比为10~40%,助烧剂体积占比为2~5%;将粉末放入模具进行高温烧结,以80~100℃/min的速度升温到800~1000℃,烧结压力为35~70MPa,烧结时间为10~30min,随炉冷却,制得一种燃料颗粒弥散分布的氢化钇基体燃料元件。根据本发明制备得到的氢化钇基材燃料元件具有工作效率高,节约设计空间等优势,特别适用于小型模块化核反应堆或微型反应堆。
-
公开(公告)号:CN112102968B
公开(公告)日:2023-04-07
申请号:CN202010791013.0
申请日:2020-08-07
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院有限公司
Abstract: 本发明提供一种高热导燃料芯块及其制备方法,包括以下步骤:S1、提供一种UO2单晶;S2、UO2单晶涂层包覆;S3、粉体预处理:将包覆型UO2单晶颗粒以及Zr合金粉体进行加热预处理;S4、粉体混合:将步骤S3制备的包覆型UO2单晶颗粒筛分成粒径大小不同的两组,先将大尺寸UO2单晶颗粒、Zr合金粉体与烧结剂按照一定的体积比例放入混料罐内,喷洒一定量的粘结剂密封混合,然后将剩余的小尺寸UO2单晶颗粒与Zr合金粉体混合后一起搅拌均匀;S5、生坯压制;以及S6、高温烧结,即可获得所述高热导燃料芯块。根据本发明提供的一种高热导燃料芯块及其制备方法,可明显改善燃料芯块的热导率,进而提升燃料芯块的安全性。
-
公开(公告)号:CN109545409B
公开(公告)日:2020-05-22
申请号:CN201811223099.6
申请日:2018-10-19
Applicant: 中国科学院上海应用物理研究所
IPC: G21C17/10
Abstract: 本发明涉及一种包覆燃料颗粒破损率的测试方法,包括步骤:选取包覆燃料颗粒的总颗粒数;在空气气氛下加热包覆燃料颗粒,阻挡承压层无破损的包覆燃料颗粒的外致密热解碳层被氧化分解以得到实心颗粒,同时,阻挡承压层有破损的包覆燃料颗粒的疏松热解碳层、内致密热解碳层和外致密热解碳层均被氧化分解以得到半空心颗粒;计算实心颗粒的第一密度和半空心颗粒的第二密度,选取密度介于第一密度和第二密度之间的液体,使实心颗粒和半空心颗粒与该液体混合,统计漂浮在液体表面的半空心颗粒的半空心颗粒数;通过半空心颗粒数除以总颗粒数得到颗粒破损率。总之,本发明所提供的检测方法操作简单准确,可以有效检测出包覆燃料颗粒中阻挡承压层的破损率。
-
公开(公告)号:CN106631112B
公开(公告)日:2019-07-30
申请号:CN201611245248.X
申请日:2016-12-29
Applicant: 中国科学院上海应用物理研究所
IPC: C04B38/04 , C04B38/06 , C04B35/565 , C04B35/563 , C04B35/56
Abstract: 本发明涉及一种空心陶瓷微球的制备方法,包括提供金属球或金属氧化物球作为核芯;在高温流化床化学气相沉积装置中,在核芯上沉积形成热解碳层;在热解碳层上沉积形成碳化硅层和/或碳化硼层和/或碳化锆层,形成实心陶瓷颗粒;通过激光打孔设备,在实心陶瓷颗粒上开孔得到开孔微球,孔至少贯穿碳化硅层和/或碳化硼层和/或碳化锆层;高温氧化热处理开孔微球,除去其中的热解碳层形成无热解碳层微球;真空浸渍无热解碳层微球,除去其中的核芯形成空心陶瓷微球。根据本发明的空心陶瓷微球的制备方法,工艺简单,所得的空心陶瓷微球的粒径分布均匀、成品率高,适合大规模连续化工业生产。
-
-
-
-
-
-
-
-
-