-
公开(公告)号:CN109900849A
公开(公告)日:2019-06-18
申请号:CN201910208911.6
申请日:2019-03-19
Applicant: 中国科学院上海应用物理研究所
IPC: G01N30/90
Abstract: 本发明提供一种凝胶相中有机添加剂降解效果的判定方法及系统,根据有机添加剂中是否包括多羟基聚合物,判定时采用不同步骤:当凝胶相中有机添加剂不包括多羟基聚合物时,判定步骤如下:S01,分别获取待评估凝胶相和对应的对比凝胶相的热解全二维色谱图;S02,判断待评估凝胶相总气相产物含量是否小于第一预设阈值;S03,当总气相产物含量小于第一预设阈值时,判定凝胶相中有机添加剂降解效果达标。本发明通过全二维气相色谱仪或全二维气质联用仪分析凝胶相中有机添加剂的热解气相产物的种类和含量,来考察降解方法对凝胶相中有机物含量的影响,从而提供了一种快速、有效的凝胶相中有机添加剂降解效果的判定方法及系统。
-
公开(公告)号:CN108059143A
公开(公告)日:2018-05-22
申请号:CN201711276211.8
申请日:2017-12-06
Applicant: 中国科学院上海应用物理研究所
IPC: C01B32/05
Abstract: 本发明涉及一种空心碳微球的制备方法,包括如下步骤:提供喷动床,其包括设置于高温加热元件中的床体,该床体具有内腔,该内腔的底部形成有气体入口;将模板核芯装入喷动床的内腔内;将惰性气体通过气体入口通入喷动床的内腔内使得模板核芯达到稳定的喷动状态,通过高温加热元件加热床体达到预设温度,将有机烃碳源和惰性气体的混合气通过气体入口通入喷动床的内腔内,使得有机烃碳源在高温下裂解以通过化学气相沉积在模板核芯上沉积多孔碳层;去除模板核芯得到空心碳微球。本发明还涉及由此获得的空心碳微球。根据本发明的空心碳微球的制备方法,将喷动床化学气相沉积方法用于制备空心碳微球,模板核芯较易去除,同时产品的各参数都较易控制。
-
公开(公告)号:CN106128533A
公开(公告)日:2016-11-16
申请号:CN201610569957.7
申请日:2016-07-19
Applicant: 中国科学院上海应用物理研究所
IPC: G21C21/10
CPC classification number: G21C21/10
Abstract: 本发明涉及一种熔盐堆球环型燃料元件的制备方法,包括:提供第一基体粉;提供较大密度的第二基体粉;将第二基体粉包裹在包覆颗粒外表面获得穿衣颗粒;将第一基体粉投入第一硅橡胶模具中5‑20MPa进行初压处理,获得球形芯球;将球形芯球置于第二硅橡胶模具中,将穿衣颗粒和第二基体粉包裹在芯球的外表面后5‑20MPa进行中压处理,获得环形芯球;将环形芯球置于第三硅橡胶模具中,将第二基体粉包裹在环形芯球的外表面后190‑300MPa进行终压处理,获得素坯;将素坯进行炭化处理和纯化处理,获得球环型燃料元件。本发明的制备方法采用逐层压制的方法形成球环型燃料元件的芯球区、燃料区和外壳区,从而提供球环形燃料元件。
-
公开(公告)号:CN119028617A
公开(公告)日:2024-11-26
申请号:CN202411114578.X
申请日:2024-08-14
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明公开一种用于基体石墨除水除氧的装置及方法,该装置包括:加热舱,内部设有加热元件和至少一个用于放置基体石墨的托盘;真空系统,用于抽出所述加热舱内的气体,以促进水分和氧气的去除;惰性气体供给气路系统,用于持续供气吹扫所述加热舱,并通过冷阱和载带去除水分和氧气;微量水氧测试系统,用于持续采样测量水氧含量;以及与加热舱相邻设置的存储箱,用于存储处理过后的基体石墨,防止基体石墨在存储过程中污染,并保持水氧含量在目标区间。根据本发明提供的方法能够在不损害基体石墨结构的前提下有效去除其中的水分和氧气,保证燃料元件在高温环境下的稳定性和安全性,特别适用于固态燃料熔盐堆等第四代核反应堆中的燃料元件制造。
-
公开(公告)号:CN109545409B
公开(公告)日:2020-05-22
申请号:CN201811223099.6
申请日:2018-10-19
Applicant: 中国科学院上海应用物理研究所
IPC: G21C17/10
Abstract: 本发明涉及一种包覆燃料颗粒破损率的测试方法,包括步骤:选取包覆燃料颗粒的总颗粒数;在空气气氛下加热包覆燃料颗粒,阻挡承压层无破损的包覆燃料颗粒的外致密热解碳层被氧化分解以得到实心颗粒,同时,阻挡承压层有破损的包覆燃料颗粒的疏松热解碳层、内致密热解碳层和外致密热解碳层均被氧化分解以得到半空心颗粒;计算实心颗粒的第一密度和半空心颗粒的第二密度,选取密度介于第一密度和第二密度之间的液体,使实心颗粒和半空心颗粒与该液体混合,统计漂浮在液体表面的半空心颗粒的半空心颗粒数;通过半空心颗粒数除以总颗粒数得到颗粒破损率。总之,本发明所提供的检测方法操作简单准确,可以有效检测出包覆燃料颗粒中阻挡承压层的破损率。
-
公开(公告)号:CN106631112B
公开(公告)日:2019-07-30
申请号:CN201611245248.X
申请日:2016-12-29
Applicant: 中国科学院上海应用物理研究所
IPC: C04B38/04 , C04B38/06 , C04B35/565 , C04B35/563 , C04B35/56
Abstract: 本发明涉及一种空心陶瓷微球的制备方法,包括提供金属球或金属氧化物球作为核芯;在高温流化床化学气相沉积装置中,在核芯上沉积形成热解碳层;在热解碳层上沉积形成碳化硅层和/或碳化硼层和/或碳化锆层,形成实心陶瓷颗粒;通过激光打孔设备,在实心陶瓷颗粒上开孔得到开孔微球,孔至少贯穿碳化硅层和/或碳化硼层和/或碳化锆层;高温氧化热处理开孔微球,除去其中的热解碳层形成无热解碳层微球;真空浸渍无热解碳层微球,除去其中的核芯形成空心陶瓷微球。根据本发明的空心陶瓷微球的制备方法,工艺简单,所得的空心陶瓷微球的粒径分布均匀、成品率高,适合大规模连续化工业生产。
-
公开(公告)号:CN109545414A
公开(公告)日:2019-03-29
申请号:CN201811487028.7
申请日:2018-12-06
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种燃料颗粒的制备方法,包括提供球形的核芯;在所述核芯上通过化学气相沉积形成多孔碳化硅层或碳化锆层,得到多孔碳化硅层或碳化锆层包覆颗粒;将多孔碳化硅层或碳化锆层包覆颗粒浸泡在活性液中进行真空浸渍,得到化合物填充多孔碳化硅层或碳化锆层包覆颗粒;使得化合物填充多孔碳化硅层或碳化锆层包覆颗粒中的化合物分解形成可燃中子毒物氧化物或氧化钍,得到燃料颗粒。本发明还提供由上述制备方法得到的核壳型燃料颗粒。本发明通过在核芯外包覆的碳化硅层或碳化锆层来提高燃料颗粒的安全性,即堆安全性;同时通过填充在碳化硅层或碳化锆层中的可燃中子毒物氧化物或氧化钍来提高堆经济性。
-
公开(公告)号:CN109545409A
公开(公告)日:2019-03-29
申请号:CN201811223099.6
申请日:2018-10-19
Applicant: 中国科学院上海应用物理研究所
IPC: G21C17/10
Abstract: 本发明涉及一种包覆燃料颗粒破损率的测试方法,包括步骤:选取包覆燃料颗粒的总颗粒数;在空气气氛下加热包覆燃料颗粒,阻挡承压层无破损的包覆燃料颗粒的外致密热解碳层被氧化分解以得到实心颗粒,同时,阻挡承压层有破损的包覆燃料颗粒的疏松热解碳层、内致密热解碳层和外致密热解碳层均被氧化分解以得到半空心颗粒;计算实心颗粒的第一密度和半空心颗粒的第二密度,选取密度介于第一密度和第二密度之间的液体,使实心颗粒和半空心颗粒与该液体混合,统计漂浮在液体表面的半空心颗粒的半空心颗粒数;通过半空心颗粒数除以总颗粒数得到颗粒破损率。总之,本发明所提供的检测方法操作简单准确,可以有效检测出包覆燃料颗粒中阻挡承压层的破损率。
-
公开(公告)号:CN119064394A
公开(公告)日:2024-12-03
申请号:CN202310645808.4
申请日:2023-06-02
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种UF3粉末纯度的检测方法,包括步骤:S1,配制(Ce(SO4)2)基体铀标准溶液;S2,获取铀含量标准曲线;S3,提供待测UF3第一粉末,根据反应方程式判定其属于第一种或第二种反应;S4,若为第二种反应,获取第一、第二溶液;反之,获取第一溶液;S5,若为第二种反应,将第一、第二溶液经过滤和消解处理分别制成第三、第四溶液;反之,制备第三溶液;S6,若为第二种反应,基于标准曲线分别获取第三、第四溶液中铀含量;反之,获取第三溶液中铀含量;S7,若为第二种反应,按公式(2)计算;反之,按公式(1)计算。本发明方法提高了检测结果的精密度和准确度,为UF3粉末的实际应用提供了重要的技术支撑。
-
公开(公告)号:CN111739665B
公开(公告)日:2022-10-04
申请号:CN202010644915.1
申请日:2020-07-07
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种石墨球慢化熔盐堆,其包括容纳于包壳中的反射层,该反射层限定活性区,活性区包括第一区域和第二区域,液态燃料熔盐自下而上流动充满第一区域和第二区域,起到慢化作用的多个石墨球仅堆积在第一区域中。根据本发明的石墨球慢化熔盐堆,使用液态熔盐作为燃料,石墨球作为慢化剂,其一方面继承了熔盐堆的优点,降低了换料成本和技术难度,另一方面简化了制作过程,因为石墨球形状简单,制作设备小型化,入堆和出堆更加灵活,操作技术难度也大大下降。
-
-
-
-
-
-
-
-
-