-
公开(公告)号:CN109919184A
公开(公告)日:2019-06-21
申请号:CN201910078669.5
申请日:2019-01-28
Applicant: 中国石油大学(北京)
Abstract: 本发明涉及了一种基于测井数据的多井复杂岩性智能识别方法及系统,该方法首先确定目标测井数据文件并进行格式转换以及归一化预处理,然后根据全区关键取芯井在取芯井段的已知岩性对测井曲线数据进行特征筛选和/或特征组合扩展获得对岩性敏感的测井曲线数据,再给对岩性响应敏感的测井曲线数据进行打标签标定组成样本数据库同时将全区未打标签的测井曲线数据组成待测数据库,进而利用样本数据库的数据并结合若干机器学习算法进行机器学习训练后自动建立若干岩性识别模型,通过分类性能评价法则选出最优的模型,并利用最优的模型对待测数据库中的数据进行岩性预测以实现全区多井复杂岩性智能识别,高效方便、全区适用且自动智能预测结果非常精准。