-
公开(公告)号:CN101986150A
公开(公告)日:2011-03-16
申请号:CN201010506229.4
申请日:2010-10-14
Applicant: 中国林业科学研究院木材工业研究所 , 北京市古代建筑研究所 , 北京林业大学
Abstract: 本发明提供了一种应力波与阻力仪配合使用检测古建筑木构件内部缺陷的方法。首先,将应力波传感器均布于木构件的不同层面上,根据应力波传播的方向和速度的变化,可形成传感器所覆盖区域的图像,进而判断否存在缺陷,缺陷的种类和大致位置;其次,再根据阻力值做进一步的分析,对缺陷的形状和空间体量进行估算。本发明创造有如下优点和效果:(1)对古建筑结构中的木构件进行现场检测,可保持文物现状;(2)不会影响木构件的力学强度;(3)对内部缺陷判断,准确性高,速度快;(4)古建筑木构件内部空洞、裂缝、腐朽缺陷的准确检测,为木结构古建筑保护和修缮方案的制定提供可靠的数据支持。
-
公开(公告)号:CN101609085A
公开(公告)日:2009-12-23
申请号:CN200910157698.7
申请日:2009-07-24
Applicant: 中国林业科学研究院木材工业研究所 , 北京林业大学
IPC: G01N33/46
Abstract: 本发明提供了一种古建筑木柱内部结构的快速阻力检测方法。它是利用阻力仪的微钻技术,通过探针钻入古建筑木柱内部,根据阻力曲线图中单位深度上阻力值波动频率的变化次数及波峰波谷之间的差异状况,进行古建筑木柱内部结构的快速检测。本发明创造有如下优点和效果:(1)对未拆卸的古建筑木柱进行现场检测,可保持文物现状;(2)利用阻力仪探测木柱内部结构,不会影响构件的力学强度;(3)根据阻力曲线图判定古建筑木柱内部结构,准确性高,速度快;(4)为木结构古建筑保护和修缮方案的制定提供可靠的数据支持。
-
公开(公告)号:CN117103408A
公开(公告)日:2023-11-24
申请号:CN202310977037.9
申请日:2023-08-04
Applicant: 中国林业科学研究院木材工业研究所
IPC: B27N3/04 , D06M11/38 , D06M11/44 , B27N3/12 , B27N3/00 , B27N1/00 , B27N1/02 , D06M101/04 , D06M101/06
Abstract: 本发明涉及一种刚柔可控的高强度无醛人造板及其制备方法,属于人造板制造领域及木材加工领域。该人造板包含植物细短纤维、聚合物细长纤维和胶黏剂,胶黏剂施加在植物细短纤维表面;采用植物细短纤维和聚合物细长纤维构建半互锁物理缠结三维网格,通过高温热致塑化和低温冷却定型,制备得到高强度无醛人造板。制备方法包括(1)高速气流解聚纤维束工序、(2)构建半互锁物理缠结三维网格工序和(3)连续化分段成型工序。当人造板的厚度≤3mm时,板材具有柔性,人造板的厚度≥3mm时,板材具有刚性。该发明突破了传统人造板刚性的问题,有利于推动人造板在装饰装修中曲面领域的应用。
-
公开(公告)号:CN112684158B
公开(公告)日:2023-03-21
申请号:CN202010176671.9
申请日:2020-03-13
Applicant: 中国林业科学研究院林业新技术研究所 , 中国林业科学研究院木材工业研究所
Abstract: 本发明提供一种古建筑木构件常用树种的现场识别方法及装置,技术方案如下:1)建立木材无损检测曲线与古建筑木构件常用树种之间的映射关系,构建古建筑木构件常用树种的无损检测信息数据库;2)获取待识别木构件所处的建筑中部分木构件的无损检测曲线及其树种信息,增列至无损检测信息数据库;3)采集待识别木构件的无损检测曲线,将该无损检测曲线与无损检测信息数据库中的各无损检测曲线进行比对并输出树种识别结果。本发明通过古建筑木构件现场无损检测曲线,快速获得古建筑木构件的树种信息,减少取样和后续树种识别的工作量;此外,通过现场无损检测曲线,在完成古建筑木构件所用树种的识别工作同时也完成了木构件内部残损的检测。
-
公开(公告)号:CN105954502A
公开(公告)日:2016-09-21
申请号:CN201610354065.5
申请日:2016-05-25
Applicant: 中国林业科学研究院木材工业研究所
IPC: G01N33/46
CPC classification number: G01N33/46
Abstract: 一种古建筑木柱内部缺陷的雷达波无损检测方法,将雷达波检测装置放在首个单元区域的起始检测点上,由该单元检测区域向上逐一对该组中的各单元区域进行检测,且在每一单元区域检测时,需完成一次完整圆周扫描,并实时记录检测数据,集合所采集到的全部检测数据,并进行处理和分析,生成木柱该组检测区域的内部检测图像,根据生成图像判断木柱是否存在内部缺陷:如所有的单元区域内都不存在内部缺陷,则直接定性;如有内部缺陷,则进一步判断已检测到的内部缺陷显示的是否完整,对显示不完整的进行外扩续检,直至显示完整,最终得到定性检测结果。其可现场快速准确地检测古建筑木柱中是否存在空洞、腐朽等缺陷,且能判定这些缺陷的位置和大小。
-
公开(公告)号:CN105382887A
公开(公告)日:2016-03-09
申请号:CN201510716344.7
申请日:2015-10-29
Applicant: 中国林业科学研究院木材工业研究所
Abstract: 本发明提供一种热塑性树脂胶合板连续组坯设备,其包括:吊装导轨;同步滚轴,用于悬吊热塑性树脂胶膜卷;皮带传输机,位于所述吊装导轨的下方,用于传送板坯;圆锯组件,位于所述皮带传输机的下游且用于锯切移动至所述圆锯组件处的板坯;以及升降台,位于所述圆锯组件的下游并用于盛放锯切后的板坯。本发明可以实现热塑性树脂胶膜和单板顺畅地连续组坯,并能够自动截断板坯进行堆放,本发明的设备自动化程度高,大大提高了热塑性树脂胶合板的组坯效率,降低了生产成本。
-
公开(公告)号:CN116987397A
公开(公告)日:2023-11-03
申请号:CN202310977034.5
申请日:2023-08-04
Applicant: 中国林业科学研究院木材工业研究所
Abstract: 本发明涉及一种多维异型高强度模压人造板及其制造方法,属于模压复合材料及人造板领域。该模压人造板包含植物短纤维和聚合物长纤维,植物短纤维的长度为30‑2000μm,聚合物长纤维的长度为3‑10cm;植物短纤维采用碱溶液进行柔化处理,先制备双纤维网格骨架预制体,再制备具有形状自适应功能的自支撑板坯,最后制得多维异型高强度热塑性树脂复合材料。本发明使用植物纤维和聚合物纤维通过“双尺度网格骨架预制体‑形状自适应功能的自支撑板坯‑多维异型高强度模压工艺”来制造,突破了传统纤维板只能应用于平板领域的问题,有利于人造板板的在异型领域的应用。
-
公开(公告)号:CN113664938B
公开(公告)日:2022-08-09
申请号:CN202111085114.7
申请日:2021-09-16
Applicant: 中国林业科学研究院木材工业研究所
Abstract: 本发明提供了一种大幅面的透明木材或竹材及其制备方法,属于复合材料技术领域。本发明通过限定木质素改性处理的方法,去除木质素中的生色基团而不破坏木质素的主体结构,能制备得到大幅面的透明木材或竹材,且保证透明木材具有优异的力学性能;本发明将树脂浸渍于纯化的白色单板中,利用树脂的固化,进一步提高透明木材的力学性能。实施例结果表明,本发明制备的透明木材具有高于85%以上的光学透光率;透明木材的力学性能接近于原始木片力学性能,其力学性能远远优于传统方法中完全脱出木质素的白色木板,避免传统方法脱除木质素以后,木材单板结构松散,容易裂开,无法制备大幅面的透明木材或竹材的缺陷。
-
公开(公告)号:CN114112676A
公开(公告)日:2022-03-01
申请号:CN202111463925.6
申请日:2021-12-03
Applicant: 中国林业科学研究院木材工业研究所
IPC: G01N3/08
Abstract: 一种木材横纹抗压全时程本构关系的构建方法。本发明的目的是提供一种能够准确定量地评估木材横纹抗压的全时程本构关系,用于古建筑木结构和现代木结构的安全评估的木材横纹抗压全时程本构关系的构建方法。在该本构关系构建方法中,基于能量等效原理方法构建的应力-应变关系模型采用直线来拟合,包含了横纹抗压过程中第一阶段线弹性段、第二阶段平台段和第三阶段密实段,能够简洁准确地描述木材横纹抗压全时程本构关系,克服传统参数回归拟合方法缺乏物理含义且拟合参数多的问题;定量确定的屈服点和硬化点,能够克服传统方法取比例线性载荷为屈服点导致模拟第二阶段平台段起点过低的问题,也克服了传统方法仅能定性描述硬化点位置的问题。
-
公开(公告)号:CN105252605A
公开(公告)日:2016-01-20
申请号:CN201510697779.1
申请日:2015-10-23
Applicant: 中国林业科学研究院木材工业研究所
Abstract: 本发明涉及细木工板技术领域,尤其是一种室外用细木工板及其制备方法。所述细木工板包括芯板、上层中板、下层中板、上层表板和下层表板,所述上层中板的第一表面与所述芯板的第一表面通过粘接层固定连接,所述下层中板的第一表面与所述芯板的第二表面通过粘接层固定连接,所述上层表板的第一表面与所述上层中板的第二表面通过粘接层固定连接,所述下层表板的第一表面与所述下层中板的第二表面通过粘接层固定连接。本发明的细木工板无毒,环境友好,不仅解决了普通细木工板材的游离甲醛污染问题。同时通过在芯板上设置引导通道,将热塑性树脂引入板材内部,利用热塑性树脂熔融流展特性,冷却固定于引导通道中粘接形成的细木工板。
-
-
-
-
-
-
-
-
-