-
公开(公告)号:CN112800707A
公开(公告)日:2021-05-14
申请号:CN202110084556.3
申请日:2021-01-21
Applicant: 西南科技大学 , 中国(绵阳)科技城工业技术研究院
IPC: G06F30/367 , G06F17/13 , G06F17/17 , G06F17/18
Abstract: 本发明公开了一种用于大型无人机锂离子电池组SOC估计的无迹粒子滤波方法,包括以下步骤:S01、根据锂离子电池组SOC的影响因素与内部因参数耦合而具有的非线性工作特性之间的关系构建电池模型;S02、采集电池组的各项数据并进行整合;S03、整合后的数据利用无迹卡尔曼滤波算法得到的均值和方差来更新粒子滤波算法采样中的粒子集;S04、根据步骤S03的计算预测锂离子电池组工作特性。具有采用无迹卡尔曼滤波具有良好的滤波效果,它通过采取对系统状态变量的概率密度拟合,从而巧妙地避开了线性化过程带来的误差,估算精度进一步提升,系统鲁棒性更好的优点。
-
公开(公告)号:CN214543672U
公开(公告)日:2021-10-29
申请号:CN202120189523.0
申请日:2021-01-21
Applicant: 中国(绵阳)科技城工业技术研究院 , 西南科技大学
IPC: H02J7/00
Abstract: 本实用新型公开了一种多功能微型化电池管理系统,包括主控芯片,所述主控芯片与电压检测电路、电流检测电路、温度采集电路、报警电路连接,所述电压检测电路包括型号为LTC6804的锂离子电池监视器,所述主控芯片的电源输出端与锂离子电池监视器的电源输入端连接。具有实时监测电池工作状态、不一致性的均衡与控制,防止电池组在充放电使用过程中因过充、过放、过热等现象而损坏电池的优点。
-
公开(公告)号:CN117591796A
公开(公告)日:2024-02-23
申请号:CN202410078084.4
申请日:2024-01-19
Applicant: 四川帝威能源技术有限公司 , 西南科技大学 , 四川城市职业学院
IPC: G06F17/18 , G01R31/367 , G06F17/16 , G06F17/11 , G06Q50/06
Abstract: 本发明公开了双层遗忘因子递推最小二乘电池模型参数在线辨识方法,包括:基于第一层递推最小二乘算法,进行电池等效电路模型参数辨识,获取预设参数和;将所述预设参数作为输入,基于第二层递推最小二乘算法,进行电流测量偏移修正,获取修正后的电流,再将修正后的电流作为第一层递推最小二乘算法的输入参数,进行迭代,获取电池等效电路模型全参数。本发明能降低算法系统噪声,提高参数辨识的精度,为动力电池的能源管理提供理论依据。
-
公开(公告)号:CN115754748A
公开(公告)日:2023-03-07
申请号:CN202111023659.5
申请日:2021-09-02
Applicant: 西南科技大学
IPC: G01R31/382
Abstract: 目前,随着新能源的日益发展,现已成为能源发展战略上的主流,电动汽车在汽车运输领域的作用愈加明显。电动汽车中电池管理系统(BMS)是连接车载动力电池和电动汽车的核心部分,它能够有效提高电池的利用率。而准确估算动力电池的荷电状态(SOC)是保证电池管理系统良好运行的前提和关键。本发明以锂电池SOC为研究对象,通过采用支持向量机的方法,将锂电池非线性空间内的样本映射到线性空间,以此来得到锂电池工作特性。根据实验结果,采用支持向量机对锂电池的工作特性进行分析,能够有效估算锂电池的SOC,为电动汽车电池带来了实用的价值。
-
公开(公告)号:CN118244112A
公开(公告)日:2024-06-25
申请号:CN202211652791.7
申请日:2022-12-22
Applicant: 西南科技大学
IPC: G01R31/367 , G06N3/0499 , G06N3/0985 , G06N3/086 , G06N3/126
Abstract: 本发明涉及一种用于锂电池SOC精确估算的超参数优化多层前馈遗传神经网络模型,该模型针对神经网络对锂电池组SOC值的精确估算目标,提出了一种超参数优化方法,通过对遗传因子取值进行遍历,实现阶梯式动态优化;降低单一优化因子对三层前馈神经网络稳定性的破坏;考虑到所建立的三层前馈神经网络对不同锂电池测试数据集的匹配性,采用随机和网格遍历相融合的测试方法,对数据集进行等比例随机抽取实时记录每组误差值直至找到最优值,设置验证集避免局部优化,克服了过拟合出现的误差;在遗传算法的基础上,对模型架构和参数运用随机和网格遍历相结合实现锂电池组的SOC估算模型的建立和优化,实现建立匹配度高,准确性高以及架构稳定的SOC估算神经网络系统。
-
公开(公告)号:CN117872169A
公开(公告)日:2024-04-12
申请号:CN202410052711.7
申请日:2024-01-12
Applicant: 西南科技大学 , 绵阳市产品质量监督检验所
IPC: G01R31/378 , G06N3/0499 , G06N3/086 , G06F18/23213 , G01R31/367 , G01R31/387 , G01R31/388
Abstract: 本发明公开了一种锂电池剩余电量估算方法和系统,适用于极端低温等特定工况下的锂电池SOC值估算。通过构建三层误差反馈神经网络,将多组特定工况下检测的实时电压、电流和工况参数‑如温度值‑输入到神经网络中进行训练,并使用遗传算法对神经网络的权重和阈值进行更新,利用K‑means分簇思想优化遗传因子取值,有效融合K算子和遗传因子自适应函数,有效避免经验取值造成的误差。本发明搭建充放电控制系统,将极端工况电压、电流及工况参数输入优化后的模型,可对锂电池剩余电量进行更为精准的估算。遗传算法的进化过程还结合了精英保留策略和替代策略,保留优质种群并设定K个簇类中心,优化种群簇类收敛过程,避免陷入局部最优以及早熟现象。
-
公开(公告)号:CN116736154A
公开(公告)日:2023-09-12
申请号:CN202210189913.7
申请日:2022-03-01
Applicant: 西南科技大学
IPC: G01R31/387
Abstract: 本发明涉及一种基于BCRLS偏差补偿的BP‑EKF在线SOC估算方法,其特征在于,通过在EKF算法基础上引入具有非线性映射与自学习能力的BP神经网络以修正EKF的模型误差,能应用于具有非线性关系的锂离子电池组SOC估算,实现了对锂离子电池组SOC值的有效迭代计算;考虑到实际环境中会有大量不确定噪声,采用BCRLS算法进行参数辨识以更好的捕捉系统的实时工作特性;建立二阶RC等效电路模型,在Thevenin等效电路模型的基础上增加一个RC回路,以更好的表征电池系统的动态和静态特性,且计算量适中;该方法在充分考虑锂离子电池成组工作基础上,基于等效模型电路,改进以卡尔曼滤波为基础的迭代计算过程,实现锂离子电池组SOC估算模型的建立和SOC值的数学迭代运算算法的可靠运行。
-
公开(公告)号:CN118011221B
公开(公告)日:2024-12-06
申请号:CN202410411497.X
申请日:2024-04-08
Applicant: 西南科技大学 , 四川文理学院 , 四川泽丰锂能新能源科技有限公司
IPC: G01R31/367 , G01R31/387 , G01R31/388 , G06N3/0499 , G06N3/04 , G06N3/086 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了基于混沌粒子群反馈优化的多温度锂电池SOC估算方法,包括:利用带有自适应惯性权重的混沌粒子群算法对预设的反馈神经网络进行训练及优化,获取锂离子电池的SOC估算模型;将实时电压电流,输入至所述SOC估算模型,获取锂离子电池的SOC值。本发明通过在混沌粒子群算法中引入自适应性惯性权重,提高了粒子全局搜索能力和局部收敛速度,解决了系统受环境影响大的非线性问题,并考虑到测试环境变化对神经网络参数预测问题,将电压电流实时输入网络,SOC为输出值,实现了锂离子电池组SOC值的有效迭代计算,并增加了估算精度和稳定性。
-
公开(公告)号:CN118011221A
公开(公告)日:2024-05-10
申请号:CN202410411497.X
申请日:2024-04-08
Applicant: 西南科技大学 , 四川文理学院 , 四川泽丰锂能新能源科技有限公司
IPC: G01R31/367 , G01R31/387 , G01R31/388 , G06N3/0499 , G06N3/04 , G06N3/086 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了基于混沌粒子群反馈优化的多温度锂电池SOC估算方法,包括:利用带有自适应惯性权重的混沌粒子群算法对预设的反馈神经网络进行训练及优化,获取锂离子电池的SOC估算模型;将实时电压电流,输入至所述SOC估算模型,获取锂离子电池的SOC值。本发明通过在混沌粒子群算法中引入自适应性惯性权重,提高了粒子全局搜索能力和局部收敛速度,解决了系统受环境影响大的非线性问题,并考虑到测试环境变化对神经网络参数预测问题,将电压电流实时输入网络,SOC为输出值,实现了锂离子电池组SOC值的有效迭代计算,并增加了估算精度和稳定性。
-
公开(公告)号:CN115656839A
公开(公告)日:2023-01-31
申请号:CN202211646158.7
申请日:2022-12-21
Applicant: 四川帝威能源技术有限公司 , 西南科技大学
Inventor: 陈超 , 王顺利 , 王超 , 乔家璐 , 刘全文 , 谢滟馨 , 于春梅 , 王建 , 曹文 , 陈蕾 , 李飞 , 靳玉红 , 范永存 , 王毅 , 周恒 , 熊莉英 , 张丽
IPC: G01R31/367 , G01R31/3842
Abstract: 本发明公开了一种基于BP‑DEKF算法的电池状态参量协同估算方法,属于新能源电池测控领域,基于二阶RC等效电路模型建立电池关于SOC和容量的状态方程;采用双扩展卡尔曼滤波方法,构建EKF1和EKF2实现对电池的SOC与SOH的协同估计;并以安时积分为桥梁,将SOC和SOH的估计值关联形成闭环,两者相互校正反馈实现协同估计,最后引入BP神经网络进行修正。本方法改进以扩展卡尔曼为基础的迭代计算过程,实现协同估算模型的建立和SOC值与SOH值的数学迭代运算算法的可靠运行,提高了计算可靠性,还为不同应用场景下锂电池SOC与SOH估算模型的建立和SOC值与SOH值计算提供方法参考,计算简洁、适应性好、精度高。
-
-
-
-
-
-
-
-
-