-
公开(公告)号:CN103050666B
公开(公告)日:2015-04-22
申请号:CN201210534860.4
申请日:2012-12-12
Applicant: 中南大学
IPC: H01M4/1395 , H01M4/38 , H01M4/587 , H01M4/62 , B82Y30/00
Abstract: 一种石墨烯包覆硅碳复合负极材料的制备方法。本发明所解决的技术问题是提高硅基负极材料的电子导电性的同时,缓冲硅基负极材料在嵌脱锂过程中产生的体积效应,提高材料循环过程中的结构稳定性。本发明采用喷雾干燥—热解处理法制备该材料。其制备方法为:将纳米硅、石墨微粉,均匀分散于氧化石墨烯的分散液中,喷雾干燥后,在惰性保护气氛下进行热处理,后随炉冷却,即得石墨烯包覆硅碳复合负极材料。本发明造球过程中不需添加额外粘结剂,在复合前驱体热处理过程中将外层氧化石墨烯原位热还原为石墨烯,过程简单易行,实用化程度高,制备的复合材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高等优点。
-
公开(公告)号:CN102544490B
公开(公告)日:2014-08-06
申请号:CN201210005975.4
申请日:2012-01-10
Applicant: 中南大学
IPC: H01M4/58
Abstract: 本发明公开了一种球形锂离子电池复合正极材料氟磷酸钒锂-磷酸钒锂的制备方法,其特征在于:采用化学还原-喷雾干燥法制备球形锂离子电池复合正极材料氟磷酸钒锂-磷酸钒锂。具体包括以下步骤:将锂源、钒源、氟源与磷源按xLiVPO4F·Li3V2(PO4)3的比例混合,加入还原剂进行化学还原,将高价钒还原成三价钒,并得到均一的溶液、溶胶或悬浊液,然后进行喷雾干燥,最后将所得产物在非氧化性气氛中加热到500~900℃,恒温2~24h,即得氟磷酸钒锂-磷酸钒锂球形复合正极材料。本发明制备的氟磷酸钒锂-磷酸钒锂球形复合正极材料倍率性能和循环性能优异。
-
公开(公告)号:CN103050668A
公开(公告)日:2013-04-17
申请号:CN201210567170.9
申请日:2012-12-24
Applicant: 中南大学
IPC: H01M4/36
Abstract: 本发明公开了一种锂离子电池用硅碳(Si/C)复合负极材料的制备方法,将石墨和金属盐类添加剂均匀分散在浓硫酸溶液中;通过氧化反应制备微氧化石墨;将获得的微氧化石墨与硅源分散在溶有碳源和有机添加剂的溶液中,超声分散,搅拌混匀后得到悬浮液,将悬浮液蒸干后,在600~1000℃下进行热处理,即得;该方法简单易行,实用化程度高,制备的复合材料具有形貌好、振实密度高、容量高、循环性能及倍率性能好等优点。
-
公开(公告)号:CN103094533B
公开(公告)日:2015-05-20
申请号:CN201210484750.1
申请日:2012-11-26
Applicant: 中南大学
IPC: H01M4/38 , H01M4/134 , H01M4/133 , H01M4/1395 , H01M4/1393
Abstract: 一种多核型核壳结构硅碳复合负极材料及制备方法。包括1、高弥散多核型多孔球的制备;2、高分散沥青悬浊液的制备;3、多核型核壳结构硅碳复合负极材料的制备:将步骤1中制得的多孔球加入步骤2中制得的高分散沥青悬浊液中,超声分散,再在强搅拌条件下加热蒸干溶剂,所得粉末颗粒转入保护性气氛中,先在低温段恒温使得沥青液体进入多孔球内部,加强硅源与导电炭网的粘结强度,并对硅源进行二次包覆及弥补步骤1中的包覆缺陷,提高硅的容量发挥率,再经高温热处理可得。本发明简单易行,实用化程度高,制备的硅碳复合材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高等优点。
-
公开(公告)号:CN102244293B
公开(公告)日:2014-11-05
申请号:CN201110154475.2
申请日:2011-06-09
Applicant: 中南大学
IPC: H01M10/0565
Abstract: 一种锂离子电池离子液体增塑型复合聚合物电解质的制备方法,本发明在提高聚合物电解质膜电导率的同时也使得膜层的电化学稳定窗口和机械性能得到进一步的增强。该发明包括两个部分的内容,一是通过水蒸气浴交换法制备无机微粒掺杂聚合物基微孔膜,它主要是先将无机颗粒均匀分散在有机溶剂中,再加聚合物基体和造孔剂溶于上述均匀有机溶剂中在搅拌的条件形成透明凝胶,通过流延成膜和水蒸气浴交换法来制备无机微粒掺杂聚合物基微孔膜;二是离子液体增塑型凝胶类复合聚合物电解质的制备,主要是通过将已制备好的掺杂聚合物微孔膜直接浸泡在咪唑型离子液体和锂盐的混合溶液中对聚合物微孔膜进行溶胀增塑。本发明由于采用蒸气浴成膜和引进咪唑类离子液体进行增塑,所制备的电解质膜机械强度与柔韧性好、离子导电率高、电化学稳定窗口宽、制备工艺简单,易于实现工业化生产。
-
公开(公告)号:CN102646818B
公开(公告)日:2014-04-30
申请号:CN201210131310.8
申请日:2012-04-28
Applicant: 中南大学
IPC: H01M4/38
Abstract: 本发明公开了一种锂离子电池硅碳复合负极材料的制备方法,采用喷雾干燥一热解处理制备该材料,其制备方法为:将第一类粘结剂有机碳源溶于适量溶剂中,加入硅源、第二类粘结剂和分散剂分散均匀,再加入石墨分散一定时间,均匀分散的悬浮液喷雾干燥后,第一类粘结剂有机碳源将硅源、石墨、第二类粘结剂颗粒粘结成球形或类球形,从而得到复合材料前驱体;所得前驱体转入保护性气氛中烧结,第二类粘结剂升温达到一定的温度后融化成液晶状,将颗粒状硅源与石墨粘结成核,有机碳源在高温下热解,形成包覆层,随炉冷却,即得锂离子电池硅碳复合负极材料。本发明简单易行,实用化程度高,制备的硅碳复合材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高等优点。
-
公开(公告)号:CN102286158A
公开(公告)日:2011-12-21
申请号:CN201110170631.4
申请日:2011-06-23
Applicant: 中南大学
Abstract: 一种含有聚合物、低温下可热分解为气体化合物和可能含有一种无机添加微粒的复合聚合物多孔性膜,该多孔性膜通过加入低温下可热分解为气体化合物的铸膜液制的湿膜,在40~90℃真空、空气或其他气氛中干燥,通过铸膜液中的低温下可热分解为气体化合物热分解的气体来造孔得到多孔性膜。所得聚合物电解质薄膜经EC-DMC-EMC的锂盐溶液浸泡活化、增塑后,表现出良好的电化学性能。本发明得到聚合物电解质薄膜的机械强度与柔韧性好,离子导电率高、电化学性能好,易于实现工业化生产。
-
公开(公告)号:CN103094533A
公开(公告)日:2013-05-08
申请号:CN201210484750.1
申请日:2012-11-26
Applicant: 中南大学
IPC: H01M4/38 , H01M4/134 , H01M4/133 , H01M4/1395 , H01M4/1393
Abstract: 一种多核型核壳结构硅碳复合负极材料及制备方法。包括:1.高弥散多核型多孔球的制备;2.高分散沥青悬浊液的制备;3.多核型核壳结构硅碳复合负极材料的制备:将步骤1中制得的多孔球加入步骤2中制得的高分散沥青悬浊液中,超声分散,再在强搅拌条件下加热蒸干溶剂,所得粉末颗粒转入保护性气氛中,先在低温段恒温使得沥青液体进入多孔球内部,加强硅源与导电炭网的粘结强度,并对硅源进行二次包覆及弥补步骤1中的包覆缺陷,提高硅的容量发挥率,再经高温热处理可得。本发明简单易行,实用化程度高,制备的硅碳复合材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高等优点。
-
公开(公告)号:CN102134329B
公开(公告)日:2012-05-30
申请号:CN201110037634.0
申请日:2011-02-14
Applicant: 中南大学
Abstract: 一种氧化铝改性聚合物电解质薄膜及制备方法,将偏氟乙烯与六氟丙烯共聚物PVDF-HFP与异丁醇铝、聚乙烯基吡咯烷酮(PVP)、二甲基甲酰胺(DMAC)混合,搅拌,得到均匀凝胶,静置,抽真空除去凝胶中的空气泡,将凝胶均匀涂敷于基体上,控制温度挥发溶剂成膜,得到原位生成的纳米氧化铝改性的PVDF-HFP/PVP聚合物电解质薄膜。所得聚合物电解质薄膜经EC-DMC-EMC的锂盐溶液浸泡活化、增塑后,表现出良好的电化学性能。本发明得到聚合物电解质薄膜的机械强度与柔韧性好,离子导电率高、电化学性能好,易于实现工业化生产。
-
公开(公告)号:CN102244293A
公开(公告)日:2011-11-16
申请号:CN201110154475.2
申请日:2011-06-09
Applicant: 中南大学
IPC: H01M10/0565
Abstract: 一种锂离子电池离子液体增塑型复合聚合物电解质的制备方法,本发明在提高聚合物电解质膜电导率的同时也使得膜层的电化学稳定窗口和机械性能得到进一步的增强。该发明包括两个部分的内容,一是通过水蒸气浴交换法制备无机微粒掺杂聚合物基微孔膜,它主要是先将无机颗粒均匀分散在有机溶剂中,再加聚合物基体和造孔剂溶于上述均匀有机溶剂中在搅拌的条件形成透明凝胶,通过流延成膜和水蒸气浴交换法来制备无机微粒掺杂聚合物基微孔膜;二是离子液体增塑型凝胶类复合聚合物电解质的制备,主要是通过将已制备好的掺杂聚合物微孔膜直接浸泡在咪唑型离子液体和锂盐的混合溶液中对聚合物微孔膜进行溶胀增塑。本发明由于采用蒸气浴成膜和引进咪唑类离子液体进行增塑,所制备的电解质膜机械强度与柔韧性好、离子导电率高、电化学稳定窗口宽、制备工艺简单,易于实现工业化生产。
-
-
-
-
-
-
-
-
-