-
公开(公告)号:CN111957967B
公开(公告)日:2023-01-03
申请号:CN202010891059.X
申请日:2020-08-30
Applicant: 中南大学
Abstract: 本发明提供一种3D打印制备多尺度陶瓷相增强金属复合材料的方法,以金属材料为基体,以陶瓷颗粒作为增强相。采用微米级TiC、TiB2、WC、SiC、CrC和A12O3中的一种或多种陶瓷颗粒作为原料,添加陶瓷颗粒的质量百分比为0~10.0%,通过分批次加入陶瓷颗粒与一定比例的金属粉末,进行特定的球磨工艺、等离子球化、气流分级以及筛分,得到球形度高、流动性好、粒度范围窄的多尺度陶瓷相均匀分布的金属复合粉末,通过3D打印制备多尺度陶瓷相增强的金属复合材料。所制备的金属复合材料,陶瓷相分布均匀,具有不同尺度,力学性能优异。采用微米级陶瓷颗粒,成本低;可以一体成形制备任意复杂形状的零件,提高材料利用率。
-
公开(公告)号:CN112553500B
公开(公告)日:2022-04-05
申请号:CN202011448825.1
申请日:2020-12-11
Applicant: 中南大学
Abstract: 本发明涉及一种同时提高Cu‑Cr‑Nb合金强度和导电率的方法。所述合金包括0.5~5.0wt.%的Cr、0.5~5.0wt.%的Nb和0.01~1.00wt.%的M,余量为铜。其中,M选自RE、B、P、Si、Ca、Zr、Li、Mg、Ti、Ni、Fe、Sn、Mn等中的至少三种,RE选自Ce、La、Y、Pr、Nd、Sm、Sc中的至少一种。本发明采用粉末成形和形变热处理制备Cu‑Cr‑Nb‑M合金。通过微合金化、快速凝固、快速致密化、形变热处理的共同作用调控合金的显微组织;利用多种强化机制的协同作用,提高合金的强度,改善的合金综合性能。所制备合金中第二相尺寸≤0.50μm,分布均匀,合金的室温抗拉强度≥450MPa,导电率≥80%IACS;高温(700℃)抗拉强度≥95MPa;实现了Cu‑Cr‑Nb合金导电率和强度的同步提高和良好匹配。
-
公开(公告)号:CN112391556B
公开(公告)日:2022-02-11
申请号:CN202011288114.2
申请日:2020-11-17
Applicant: 中南大学
IPC: C22C9/00 , C22C1/04 , C22F1/02 , C22F1/08 , B22F9/08 , B22F1/052 , B22F1/14 , B22F10/28 , B22F10/64 , B22F3/24 , B33Y10/00 , B33Y70/00 , B33Y40/20 , B33Y40/10
Abstract: 本发明提供一种双峰晶粒尺寸、双尺度纳米相强化的高强高导Cu‑Cr‑Nb合金,属于增材制造及高强高导铜合金领域。本发明设计的合金中,Cr、Nb元素含量分别为2.0‑2.8at%、1‑1.3at%,并控制Cr、Nb原子比略大于2:1,利用Cr2Nb相、Cr相等纳米相强化铜基体。本发明通过选区激光熔融配合特殊的热处理工艺,制备得到具有双峰晶粒尺寸、双尺度纳米相强化的高性能Cu‑Cr‑Nb合金。本发明所制备的Cu‑Cr‑Nb合金其室温抗拉强度大于800MPa,屈服强度大于710MPa,显微硬度不低于256HV,伸长率不低于25%,导电率不低于70%IACS;700℃抗拉强度为145~155MPa。
-
公开(公告)号:CN111996425B
公开(公告)日:2021-11-30
申请号:CN202010891268.4
申请日:2020-08-30
Applicant: 中南大学
Abstract: 本发明公开了一种高强Al‑Zn‑Mg‑Cu铝合金及其制备方法,涉及铝合金领域,按重量百分比,包括以下成分:Si:≤0.5%,Fe:≤0.5%,Zn:5.0‑7.0%,Cu:2.0‑3.0%,Mg:1.5‑3.0%,Sc:0.15‑0.35%,Zr:0.1‑0.2%,Y:0.1‑0.3%,余量为铝及不可除杂质。制备方法为:熔炼、模具、精炼除杂除气、浇注、均匀化热处理、三维大变形锻造预变形、等温变形加工、热处理。所用铸造模具为金属模具作为内模、环绕冷却管,砂型模具作为外模的特殊组合模具,制备得到高质量、高性能铸件;所述热处理为固溶处理+梯度时效处理。本发明所制备的Al‑Zn‑Mg‑Cu铝合金,强度达650MPa,伸长率为10‑13%,在强度提高的同时,实现了伸长率的提升,提高了使用寿命,在高强铝合金领域具有重要的价值。
-
公开(公告)号:CN112011713B
公开(公告)日:2021-11-23
申请号:CN202010891045.8
申请日:2020-08-30
Applicant: 中南大学
IPC: C22C19/05 , C22C30/00 , B22F9/08 , B22F9/14 , B22F10/28 , B22F10/64 , B33Y10/00 , B33Y40/20 , B22F1/00 , B33Y70/00
Abstract: 本发明提供一种消除3D打印镍基高温合金裂纹的方法,属于高温合金增材制造技术领域。针对γ′相沉淀强化镍基高温合金3D打印易产生裂纹的问题,本发明首次提出通过适量稀土进行稀土微合金化,降低γ′相沉淀强化镍基高温合金3D打印开裂敏感性,扩宽3D打印工艺窗口,抑制3D打印裂纹的产生,大幅提高成形件的强度和塑性,有效预防工序间存放开裂、后续热处理开裂等后续加工过程中裂纹的形成。使用该方法制备的γ′相沉淀强化镍基高温合金René104未见裂纹,致密度超过99.4%,屈服强度和抗拉强度分别达到了935MPa和1256MPa,伸长率超过14.0%。
-
公开(公告)号:CN112011702B
公开(公告)日:2021-11-23
申请号:CN202010891080.X
申请日:2020-08-30
Applicant: 中南大学
IPC: C22C1/05 , C22C1/10 , C22C30/00 , B22F9/04 , B22F3/105 , B33Y10/00 , B33Y70/10 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供一种采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法,以镍基高温合金为基体,以TiC、TiB2、WC和A12O3中的一种或多种作为增强相。作为增强相的陶瓷颗粒原料粒径为1~5μm,添加量为1~5wt.%,通过特定的球磨工艺制备纳米陶瓷均匀分布的镍基高温合金复合粉末,通过3D打印技术制备纳米陶瓷相增强镍基高温合金,所制备的材料纳米陶瓷相分布均匀,具有优异的力学性能。采用微米级陶瓷颗粒,成本低;可以一体成形制备任意复杂形状的零件,提高材料利用率。
-
公开(公告)号:CN108827991B
公开(公告)日:2021-04-30
申请号:CN201810843527.9
申请日:2018-07-27
Applicant: 中南大学
IPC: G01N23/2202
Abstract: 本发明涉及一种铁磁性合金块体和/或薄膜的强化相表征方法。其优化方案包括:利用电解法将铁磁性合金中纳米至微米尺寸强化相与合金基体分离,得到含有强化相的电解液;然后经无水乙醇稀释、超声分散后,滴至超薄碳支撑膜、干燥,制得电镜检测样品;再采用电镜进行结构观察及表征。本发明可以表征铁磁性合金中小于0.5μm强化相的形貌、结构,特别是尺寸小于50nm的强化相。本发明分离获得的强化相保留了强化相原始结构,方法简单、高效,电解条件易获得,操作简单,重复性强,可用于多种铁磁性材料中的强化相的分析表征。本发明有效避免了铁磁性合金基体对电镜设备及检测过程造成的不利影响,实现了铁磁性合金强化相的TEM/HRTEM结构表征。
-
公开(公告)号:CN112695219A
公开(公告)日:2021-04-23
申请号:CN202011448811.X
申请日:2020-12-11
Applicant: 中南大学
IPC: C22C1/03 , C22C9/00 , B22C9/06 , C22F1/02 , C22F1/08 , B21B37/00 , B21B37/74 , B21C23/00 , B21C31/00 , B21J5/00 , B21K29/00
Abstract: 本发明涉及一种提高熔炼铸造Cu‑Cr‑Nb合金强度和导电率的方法,属于铜合金材料领域。合金的主要成分是Cu、Cr、Nb及M,Cr的占比为0.5~2.5wt.%,Nb占比为0.1~1.0wt.%,M占比为0.1~0.50wt.%,余量为铜。其中,M为RE、Ag、B、P、Si、Ca、Li、Mg、Ti、Fe、Zr、Mn中的至少四种元素组成,RE选自Ce、La、Y、Pr、Nd、Sm、Sc、Gd、Dy中的至少一种。本发明向合金中添加微合金化元素M,采用熔炼、铸造和形变热处理加工,制备组织细小、成分均匀的大尺寸高强高导Cu‑Cr‑Nb‑M合金。本发明采用金属模具作为内模并环绕冷却管、砂型模具作为外模的特殊组合模具,通过冷却水提高熔体凝固速率。利用M微合金化、快速凝固和形变热处理的共同作用,调控合金的组织,改善合金的性能,获得了多尺度多相、细晶、亚晶以及位错缠结的显微组织,实现了大尺寸Cu‑Cr‑Nb合金的直接铸造成形,并实现了强度和导电率的同步提高和良好匹配。工艺简单,生产成本低、应用前景良好。
-
公开(公告)号:CN112255252A
公开(公告)日:2021-01-22
申请号:CN202011098339.1
申请日:2020-10-14
Applicant: 中南大学
IPC: G01N23/04
Abstract: 本发明涉及一种利用非水溶液电解系统提取纳米第二相的方法及其应用。本发明通过独特的电解系统设计,使电解液在电解过程中形成溢流和涡流,溢流和涡流电解液不断地冲刷电极和电解槽,可以有效的防止纳米第二相在电极和电解槽的表面吸附以及纳米第二相的团聚。通过电解液成分设计,尤其是电解质、增稠剂和络合剂的配合使用,可实现铁磁性合金的选择性电解反应,实现铁磁性合金中基体与第二相的有效分离,抑制Fe3+在第二相表面的沉降及包覆;有效的增加了第二相沉降阻力,抑制第二相沉降。使用该电解液及电解体系,有利于提高电解反应效率,提高尺寸小于20nm尤其是尺寸小于15nm第二相的收集率,实现铁磁性合金中纳米第二相提取与表征。
-
公开(公告)号:CN112011702A
公开(公告)日:2020-12-01
申请号:CN202010891080.X
申请日:2020-08-30
Applicant: 中南大学
IPC: C22C1/05 , C22C1/10 , C22C30/00 , B22F9/04 , B22F3/105 , B33Y10/00 , B33Y70/10 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供一种采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法,以镍基高温合金为基体,以TiC、TiB2、WC和A12O3中的一种或多种作为增强相。作为增强相的陶瓷颗粒原料粒径为1~5μm,添加量为1~5wt.%,通过特定的球磨工艺制备纳米陶瓷均匀分布的镍基高温合金复合粉末,通过3D打印技术制备纳米陶瓷相增强镍基高温合金,所制备的材料纳米陶瓷相分布均匀,具有优异的力学性能。采用微米级陶瓷颗粒,成本低;可以一体成形制备任意复杂形状的零件,提高材料利用率。
-
-
-
-
-
-
-
-
-