一种基于点扩散函数和去卷积的微血管超分辨成像方法、设备及介质

    公开(公告)号:CN114820360A

    公开(公告)日:2022-07-29

    申请号:CN202210420008.8

    申请日:2022-04-21

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于点扩散函数和去卷积的微血管超分辨成像方法、设备及介质,方法:获取造影增强的超声回波信号,进行信号前处理、波束合成与正交解调得到超声图像;对超声图像进行图像后处理,叠加得到微血管超分辨率图像;所述图像后处理包括:去相干、插值、微泡分离、去噪、点扩散函数去卷积、定位微泡质心;微泡分离包括:利用一个超声微泡模型的成像结果作为点扩散函数PSF1,对图像所有子图进行二维归一化互相关计算,将其中互相关系数最大的子图作为点扩散函数PSF2;利用PSF2对图像进行二维归一化互相关处理,保留系数大于阈值T的子图;在点扩散函数去卷积时,采用PSF2作为去卷积的模糊核。本发明不但能够提升成像的准确度和图像分辨率,而且还能有效抑制图像的背景噪声。

    一种3D打印多层微流控芯片及其高通量制备脂质体的方法

    公开(公告)号:CN113600251B

    公开(公告)日:2022-06-03

    申请号:CN202110899540.8

    申请日:2021-08-06

    Applicant: 中南大学

    Abstract: 本发明提供一种3D打印多层微流控芯片及其高通量制备脂质体的方法。采用3D打印制作的多层微流控芯片是多层微通道、入口、出口、接头集成一体化的芯片,多层微通道堆叠分布在芯片内部的不同高度位置,微通道由有机溶液通道、水溶液通道、聚焦区域、混合通道组成。将脂质、胆固醇按照一定的摩尔浓度比溶解在有机溶剂中,然后将脂质的有机溶液注入到芯片的有机通道中,同时也将水溶液注入到水溶液通道中,随着有机溶液与水溶液在聚焦区域交汇,有机溶剂的浓度急剧减小,脂质分子在水中自发形成脂质体。该微流控芯片一方面避免了复杂的微纳加工工艺,具有成本低廉、可批量化制作等优点。另一方面,其集成的多层微通道实现了高通量的脂质体制备。

    一种基于点扩散函数和去卷积的微血管超分辨成像方法、设备及介质

    公开(公告)号:CN114820360B

    公开(公告)日:2024-11-01

    申请号:CN202210420008.8

    申请日:2022-04-21

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于点扩散函数和去卷积的微血管超分辨成像方法、设备及介质,方法:获取造影增强的超声回波信号,进行信号前处理、波束合成与正交解调得到超声图像;对超声图像进行图像后处理,叠加得到微血管超分辨率图像;所述图像后处理包括:去相干、插值、微泡分离、去噪、点扩散函数去卷积、定位微泡质心;微泡分离包括:利用一个超声微泡模型的成像结果作为点扩散函数PSF1,对图像所有子图进行二维归一化互相关计算,将其中互相关系数最大的子图作为点扩散函数PSF2;利用PSF2对图像进行二维归一化互相关处理,保留系数大于阈值T的子图;在点扩散函数去卷积时,采用PSF2作为去卷积的模糊核。本发明不但能够提升成像的准确度和图像分辨率,而且还能有效抑制图像的背景噪声。

    一种3D打印多层微流控芯片及其高通量制备脂质体的方法

    公开(公告)号:CN113600251A

    公开(公告)日:2021-11-05

    申请号:CN202110899540.8

    申请日:2021-08-06

    Applicant: 中南大学

    Abstract: 本发明提供一种3D打印多层微流控芯片及其高通量制备脂质体的方法。采用3D打印制作的多层微流控芯片是多层微通道、入口、出口、接头集成一体化的芯片,多层微通道堆叠分布在芯片内部的不同高度位置,微通道由有机溶液通道、水溶液通道、聚焦区域、混合通道组成。将脂质、胆固醇按照一定的摩尔浓度比溶解在有机溶剂中,然后将脂质的有机溶液注入到芯片的有机通道中,同时也将水溶液注入到水溶液通道中,随着有机溶液与水溶液在聚焦区域交汇,有机溶剂的浓度急剧减小,脂质分子在水中自发形成脂质体。该微流控芯片一方面避免了复杂的微纳加工工艺,具有成本低廉、可批量化制作等优点。另一方面,其集成的多层微通道实现了高通量的脂质体制备。

Patent Agency Ranking