-
公开(公告)号:CN108985269A
公开(公告)日:2018-12-11
申请号:CN201810933385.5
申请日:2018-08-16
Applicant: 东南大学
Abstract: 基于卷积和空洞卷积结构的融合网络驾驶环境感知模型,同时实现目标检测和语义分割。通过安装在车辆上的前视相机系统拍摄道路环境视频图像;采用残差网络模型得到图像底层特征图;设计融合网络,包括目标检测和语义分割2个子模块,这2个模块共享底层特征图。其中,目标检测模块负责预测目标框与类别置信度,语义分割模块负责对每个类别进行像素级预测。对两个模块分别选取合适的损失函数,先交替训练使感知模型在两个模块都趋于收敛;最后使用联合损失函数同时训练两个模块,得到最终感知模型。本发明可以用较小的运算量同时完成目标检测和语义分割,并且感知模型使用目标检测的大量数据辅助语义分割模块学习图像分布规律。
-
公开(公告)号:CN109117701A
公开(公告)日:2019-01-01
申请号:CN201810568305.0
申请日:2018-06-05
Applicant: 东南大学
Abstract: 本发明涉及一种基于图卷积的行人意图识别方法,通过安装在车辆上的前视相机系统拍摄道路环境视频图像;对图像进行行人检测和行人人体关键点信息提取,并基于图论的方法构造邻接矩阵表示行人人体关键点的连接信息;通过图卷积算法从人体关键点的坐标信息和邻接矩阵表示中提取底层特征,并将底层特征通过深度卷积神经网络和深度循环神经网络进行高层次特征提取和时序分析;选择合适的损失函数,基于通过人工标注方法构建的行人意图数据集,对前述模型参数进行优化训练,实现对行人行为意图的分类识别。本发明有效利用了行人人体关键点信息这一高层次语义特征,使得汽车高级驾驶辅助系统具有理解行人行为意图的能力。
-
公开(公告)号:CN111062311B
公开(公告)日:2023-05-23
申请号:CN201911281009.3
申请日:2019-12-13
Applicant: 东南大学
IPC: G06V40/10 , G06V20/54 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种深度级可分离卷积网络的行人手势识别与交互方法,包括:通过安装在车辆上的前视相机系统采集包含行人的图像;将图像输入深度可分离卷积网络,检测行人包围盒,将包围盒区域的图像输入手势识别网络,输出行人区域的特征图。将行人所在区域的图像输入手势识别网络进行手势识别。手势识别网络通过深度级可分离卷积层提取特征,在输出特征图的每个点都预测12个人体关节点信息以及对应的12个偏移向量,最后通过对关节点分类理解行人手势,车辆根据识别到的行人手势,结合手势优先级,采取最保守策略做出决策。本发明使用深度级可分离卷积实现模型,成倍缩小模型规模,可以在智能手机等低功耗移动终端实现检测。
-
公开(公告)号:CN108985269B
公开(公告)日:2022-06-10
申请号:CN201810933385.5
申请日:2018-08-16
Applicant: 东南大学
Abstract: 基于卷积和空洞卷积结构的融合网络驾驶环境感知模型,同时实现目标检测和语义分割。通过安装在车辆上的前视相机系统拍摄道路环境视频图像;采用残差网络模型得到图像底层特征图;设计融合网络,包括目标检测和语义分割2个子模块,这2个模块共享底层特征图。其中,目标检测模块负责预测目标框与类别置信度,语义分割模块负责对每个类别进行像素级预测。对两个模块分别选取合适的损失函数,先交替训练使感知模型在两个模块都趋于收敛;最后使用联合损失函数同时训练两个模块,得到最终感知模型。本发明可以用较小的运算量同时完成目标检测和语义分割,并且感知模型使用目标检测的大量数据辅助语义分割模块学习图像分布规律。
-
公开(公告)号:CN109117701B
公开(公告)日:2022-01-28
申请号:CN201810568305.0
申请日:2018-06-05
Applicant: 东南大学
Abstract: 本发明涉及一种基于图卷积的行人意图识别方法,通过安装在车辆上的前视相机系统拍摄道路环境视频图像;对图像进行行人检测和行人人体关键点信息提取,并基于图论的方法构造邻接矩阵表示行人人体关键点的连接信息;通过图卷积算法从人体关键点的坐标信息和邻接矩阵表示中提取底层特征,并将底层特征通过深度卷积神经网络和深度循环神经网络进行高层次特征提取和时序分析;选择合适的损失函数,基于通过人工标注方法构建的行人意图数据集,对前述模型参数进行优化训练,实现对行人行为意图的分类识别。本发明有效利用了行人人体关键点信息这一高层次语义特征,使得汽车高级驾驶辅助系统具有理解行人行为意图的能力。
-
公开(公告)号:CN111062311A
公开(公告)日:2020-04-24
申请号:CN201911281009.3
申请日:2019-12-13
Applicant: 东南大学
Abstract: 本发明涉及一种深度级可分离卷积网络的行人手势识别与交互方法,包括:通过安装在车辆上的前视相机系统采集包含行人的图像;将图像输入深度可分离卷积网络,检测行人包围盒,将包围盒区域的图像输入手势识别网络,输出行人区域的特征图。将行人所在区域的图像输入手势识别网络进行手势识别。手势识别网络通过深度级可分离卷积层提取特征,在输出特征图的每个点都预测12个人体关节点信息以及对应的12个偏移向量,最后通过对关节点分类理解行人手势,车辆根据识别到的行人手势,结合手势优先级,采取最保守策略做出决策。本发明使用深度级可分离卷积实现模型,成倍缩小模型规模,可以在智能手机等低功耗移动终端实现检测。
-
公开(公告)号:CN110096973A
公开(公告)日:2019-08-06
申请号:CN201910304333.6
申请日:2019-04-16
Applicant: 东南大学
Abstract: 本发明提出了一种基于ORB算法和深度级可分离卷积网络的交警手势识别方法,步骤如下:S1、采用摄像机拍摄含有交警的图像;S2、预处理图像,利用ORB算法检测预处理后的图像中的关键点;S3、利用BRIED特征描述子描述S2中的关键点特征;S4、通过随机一致性采样算法和关键点匹配图像中交警制服所在区域;S5、计算交警制服中心点,结合交警制服与交警身体的比例关系膨胀出交警所在区域;S6、将交警区域图像输入手势识别网络,手势识别网络利用深度级可分离卷积结构精简模型,并通过支持向量机或者一层全连接层得到手势分类结果,完成交警手势识别。本发明方法模型规模小,运算量少,运算速度快,识别精度高,可以部署在手机等低功耗设备上,方便推广。
-
-
-
-
-
-