一种松材线虫病扩散蔓延预测方法

    公开(公告)号:CN118246596A

    公开(公告)日:2024-06-25

    申请号:CN202410334837.3

    申请日:2024-03-22

    Abstract: 本发明提出一种松材线虫病扩散蔓延预测方法,属于森林保护学技术领域。包括以下步骤:S1.收集松材线虫病历史发生数据,并存储为栅格数据,再将栅格数据转换为矢量数据;S2.获取松材线虫病的影响因子历史发生数据并对影响因子的相关性进行分析;S3建构基于松材线虫病的传染病动力学模型;S4.建构PGNN物理引导神经网络混合模型;S5.将松材线虫病历史发生数据和相关度强的影响因子数据输入至PGNN物理引导神经网络混合模型中,输出松材线虫病扩散蔓延情况。S6.基于遗传优化算法对PGNN物理引导神经网络模型参数进行优化,返回至S5;解决现有技术中存在的缺乏高效、准确的预测方法的技术问题。

    一种松材线虫病扩散蔓延预测方法

    公开(公告)号:CN118246596B

    公开(公告)日:2025-03-28

    申请号:CN202410334837.3

    申请日:2024-03-22

    Abstract: 本发明提出一种松材线虫病扩散蔓延预测方法,属于森林保护学技术领域。包括以下步骤:S1.收集松材线虫病历史发生数据,并存储为栅格数据,再将栅格数据转换为矢量数据;S2.获取松材线虫病的影响因子历史发生数据并对影响因子的相关性进行分析;S3建构基于松材线虫病的传染病动力学模型;S4.建构PGNN物理引导神经网络混合模型;S5.将松材线虫病历史发生数据和相关度强的影响因子数据输入至PGNN物理引导神经网络混合模型中,输出松材线虫病扩散蔓延情况。S6.基于遗传优化算法对PGNN物理引导神经网络模型参数进行优化,返回至S5;解决现有技术中存在的缺乏高效、准确的预测方法的技术问题。

Patent Agency Ranking