-
公开(公告)号:CN118333231B
公开(公告)日:2025-02-14
申请号:CN202410589324.7
申请日:2024-05-13
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06Q10/067 , G06Q50/02 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 一种松材线虫病害传播预测方法、电子设备及存储介质,属于松材线虫病害预测技术领域。为提高松材线虫病害预测的准确性,本发明包括数据收集,包括疫木分布地区的历史病害发生数据和疫木分布地区的气象数据和地理信息数据;进行预处理,然后构建训练集、验证集和测试集;构建基于Kalman‑LSTM‑NGO组合的松材线虫病害传播预测模型,利用得到的训练集进行模型训练,利用验证集对模型进行验证调优和测试,利用测试集对模型进行预测,得到松材线虫病害传播预测结果进行可视化处理,用于帮助决策者根据可视化处理结果分析施肥、疏伐、采伐方面的措施,提出包括松树疫情监测、控制手段和资源分配的优化建议。本发明预测准确。
-
公开(公告)号:CN118333231A
公开(公告)日:2024-07-12
申请号:CN202410589324.7
申请日:2024-05-13
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06Q10/067 , G06Q50/02 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 一种松材线虫病害传播预测方法、电子设备及存储介质,属于松材线虫病害预测技术领域。为提高松材线虫病害预测的准确性,本发明包括数据收集,包括疫木分布地区的历史病害发生数据和疫木分布地区的气象数据和地理信息数据;进行预处理,然后构建训练集、验证集和测试集;构建基于Kalman‑LSTM‑NGO组合的松材线虫病害传播预测模型,利用得到的训练集进行模型训练,利用验证集对模型进行验证调优和测试,利用测试集对模型进行预测,得到松材线虫病害传播预测结果进行可视化处理,用于帮助决策者根据可视化处理结果分析施肥、疏伐、采伐方面的措施,提出包括松树疫情监测、控制手段和资源分配的优化建议。本发明预测准确。
-