交互式属性术语及情感联合抽取模型的方法

    公开(公告)号:CN115062623A

    公开(公告)日:2022-09-16

    申请号:CN202210661594.5

    申请日:2022-06-10

    Applicant: 东北大学

    Abstract: 本发明涉及文本内容的情感抽取模型技术领域,尤其涉及交互式属性术语及情感联合抽取模型的方法。其主要针对现有应用难以有效学习属性术语的特征,属性术语及情感联合抽取的研究内容匮乏的问题,提出如下技术方案:包括属性术语抽取模块、情感分类模块和交互共享单元,包括以下步骤:步骤1:获取句中单词的情感倾向;步骤2:交互共享单元让两个模块互相学习;步骤3:属性术语抽取任务标签和情感分类任务标签结合。本发明充分地利用外部情感资源,两阶段处理增强的情感分析,提高语句中情感抽取的精确性,交互共享单元提高模块学习效果,有助于特征向量的结果预测,主要应用于属性术语及文本情感联合抽取。

    一种面向社交网络的兴趣社群发现方法

    公开(公告)号:CN110457477A

    公开(公告)日:2019-11-15

    申请号:CN201910734196.X

    申请日:2019-08-09

    Applicant: 东北大学

    Abstract: 本发明提供一种面向社交网络的兴趣社群发现方法,涉及社区发现技术领域,本发明在传统Text CNN模型基础上建立新的深度学习模型,能够支持多篇社交网络文本输入,并结合社交网络文本间的相似度,提出了基于Text CNN结合相似度的多文本兴趣建模方法,并提出了结合网络结构和互动行为的用户兴趣特征建模方法。利用LM神将网络算法构建用户影响力模型,再根据该模型结果、关注关系以及@行为信息对基于SMB-TextCNN的结果进行调整,最后根据SIBUIM的结果,提出了基于k-means重叠的兴趣社区发现方法。该方法考虑了社交网络的结构性以及节点的内容,并且能够对新浪微博用户进行重叠的兴趣社区划分。

Patent Agency Ranking