-
公开(公告)号:CN110060286A
公开(公告)日:2019-07-26
申请号:CN201910340694.6
申请日:2019-04-25
Applicant: 东北大学
IPC: G06T7/50
Abstract: 本发明实施例涉及一种单目深度估计方法,其包括:获取待处理图像,并对所述待处理图像进行缩放处理,得到缩放图像;对所述缩放图像基于多尺度全卷积密集神经网络进行训练,得到深度图;对所述深度图进行放大处理,得到与所述待处理图像的尺寸大小相同的深度图;其中对所述缩放图像基于多尺度全卷积密集神经网络进行训练包括:对所述缩放图像进行特征提取,得到浅层特征;通过多尺度模块对所述浅层特征进行特征连接,得到深层特征;将所述深层特征与处理后的浅层特征进行特征连接,得到所述深度图。本发明实施例提供的方法通过多尺度全卷积密集神经网络对待处理图像进行训练,不仅可以大幅提高单目深度估计的准确率,还能提高单目深度估计的精度。
-
公开(公告)号:CN110060286B
公开(公告)日:2023-05-23
申请号:CN201910340694.6
申请日:2019-04-25
Applicant: 东北大学
IPC: G06T7/50
Abstract: 本发明实施例涉及一种单目深度估计方法,其包括:获取待处理图像,并对所述待处理图像进行缩放处理,得到缩放图像;对所述缩放图像基于多尺度全卷积密集神经网络进行训练,得到深度图;对所述深度图进行放大处理,得到与所述待处理图像的尺寸大小相同的深度图;其中对所述缩放图像基于多尺度全卷积密集神经网络进行训练包括:对所述缩放图像进行特征提取,得到浅层特征;通过多尺度模块对所述浅层特征进行特征连接,得到深层特征;将所述深层特征与处理后的浅层特征进行特征连接,得到所述深度图。本发明实施例提供的方法通过多尺度全卷积密集神经网络对待处理图像进行训练,不仅可以大幅提高单目深度估计的准确率,还能提高单目深度估计的精度。
-
公开(公告)号:CN107341822B
公开(公告)日:2019-11-08
申请号:CN201710416336.X
申请日:2017-06-06
Applicant: 东北大学
IPC: G06T7/32
Abstract: 本发明公开了一种基于最小分支代价聚合的立体匹配方法。所述的最小分支构建于有向图,有向图的方向是由图像像素点的梯度信息决定的。在最小分支构建完成后,输入图像被分割成很多碎片,碎片的大小和强度信息能够有效的区分图像的强弱纹理区域,再根据碎片的大小和相似性将最可能处于同一视差下的碎片连接在一起,最后在所建立的完整最小分支结构上执行代价聚合步骤。基于最小分支的代价聚合方法保留了更多的图像自然信息,使得代价聚合结果更加准确,从而有效的提高了立体匹配的精度。
-
公开(公告)号:CN107341823A
公开(公告)日:2017-11-10
申请号:CN201710415745.8
申请日:2017-06-06
Applicant: 东北大学
IPC: G06T7/33
CPC classification number: G06T7/337 , G06T2207/10012
Abstract: 本发明公开了一种基于特征融合的最小分支立体匹配方法,能够有效解决弱纹理区域、不连续区域、遮挡区域的误匹配问题,提高立体匹配精度。最小分支结构首次利用梯度信息构建有向图聚合匹配代价,构建最小分支后图像被分割成若干区域,图像被分割成区域的过程不需要设置任何参数,不仅分割过程自然,而且可以有效地区分图像中的纹理区域,提高了立体匹配准确性。基于特征融合的初始匹配代价计算改善了弱纹理区域和不连续区域的误匹配问题,基于四个方向寻找未遮挡点的左右一致性检测,有效改善了遮挡区域的误匹配问题,进一步提高了立体匹配的准确性。
-
公开(公告)号:CN110084307A
公开(公告)日:2019-08-02
申请号:CN201910361528.4
申请日:2019-04-30
Applicant: 东北大学
Abstract: 本发明提出了一种基于深度强化学习的移动机器人视觉跟随方法。采用“模拟图像有监督预训练+模型迁移+RL”的架构,首先在真实环境中收集少量的数据,采用计算机程序和图像处理技术对数据集进行自动化扩充,以便在短时间内得到大量可以适应真实场景的模拟数据集,用于对跟随机器人的方向控制模型进行有监督训练;其次,搭建用于机器人方向控制的CNN模型,并用自动化构造的模拟数据集对其进行有监督训练,使其作为预训练模型;接着将预训练模型的知识迁移到基于DRL的控制模型中,令机器人在真实环境中执行跟随任务,结合强化学习机制,使得机器人可以在环境交互的过程中一边跟随,一边对方向控制性能进行提升,不仅鲁棒性高,且大大降低成本。
-
公开(公告)号:CN107274415A
公开(公告)日:2017-10-20
申请号:CN201710416337.4
申请日:2017-06-06
Applicant: 东北大学
IPC: G06T7/11
CPC classification number: G06T7/11
Abstract: 本发明公开了一种基于Tarjan算法和区域连接的图像分割技术,所述的Tarjan算法用于求解有向图的最小分支,当构建完最小分支后,图像被分割成大量碎片。为防止图像出现过分割,若相邻区域间的大小和相似性满足区域连接条件,则连接相邻区域。对比目前存在的图像分割技术,该算法用于图像分割具有时间快,分割准确,构建过程中不需要设置任何参数等优点。
-
公开(公告)号:CN110084307B
公开(公告)日:2021-06-18
申请号:CN201910361528.4
申请日:2019-04-30
Applicant: 东北大学
Abstract: 本发明提出了一种基于深度强化学习的移动机器人视觉跟随方法。采用“模拟图像有监督预训练+模型迁移+RL”的架构,首先在真实环境中收集少量的数据,采用计算机程序和图像处理技术对数据集进行自动化扩充,以便在短时间内得到大量可以适应真实场景的模拟数据集,用于对跟随机器人的方向控制模型进行有监督训练;其次,搭建用于机器人方向控制的CNN模型,并用自动化构造的模拟数据集对其进行有监督训练,使其作为预训练模型;接着将预训练模型的知识迁移到基于DRL的控制模型中,令机器人在真实环境中执行跟随任务,结合强化学习机制,使得机器人可以在环境交互的过程中一边跟随,一边对方向控制性能进行提升,不仅鲁棒性高,且大大降低成本。
-
公开(公告)号:CN107341823B
公开(公告)日:2019-08-09
申请号:CN201710415745.8
申请日:2017-06-06
Applicant: 东北大学
IPC: G06T7/33
Abstract: 本发明公开了一种基于特征融合的最小分支立体匹配方法,能够有效解决弱纹理区域、不连续区域、遮挡区域的误匹配问题,提高立体匹配精度。最小分支结构首次利用梯度信息构建有向图聚合匹配代价,构建最小分支后图像被分割成若干区域,图像被分割成区域的过程不需要设置任何参数,不仅分割过程自然,而且可以有效地区分图像中的纹理区域,提高了立体匹配准确性。基于特征融合的初始匹配代价计算改善了弱纹理区域和不连续区域的误匹配问题,基于四个方向寻找未遮挡点的左右一致性检测,有效改善了遮挡区域的误匹配问题,进一步提高了立体匹配的准确性。
-
-
公开(公告)号:CN107341822A
公开(公告)日:2017-11-10
申请号:CN201710416336.X
申请日:2017-06-06
Applicant: 东北大学
IPC: G06T7/32
Abstract: 本发明公开了一种基于最小分支代价聚合的立体匹配方法。所述的最小分支构建于有向图,有向图的方向是由图像像素点的梯度信息决定的。在最小分支构建完成后,输入图像被分割成很多碎片,碎片的大小和强度信息能够有效的区分图像的强弱纹理区域,再根据碎片的大小和相似性将最可能处于同一视差下的碎片连接在一起,最后在所建立的完整最小分支结构上执行代价聚合步骤。基于最小分支的代价聚合方法保留了更多的图像自然信息,使得代价聚合结果更加准确,从而有效的提高了立体匹配的精度。
-
-
-
-
-
-
-
-
-