一种单目深度估计方法
    1.
    发明授权

    公开(公告)号:CN110060286B

    公开(公告)日:2023-05-23

    申请号:CN201910340694.6

    申请日:2019-04-25

    Applicant: 东北大学

    Abstract: 本发明实施例涉及一种单目深度估计方法,其包括:获取待处理图像,并对所述待处理图像进行缩放处理,得到缩放图像;对所述缩放图像基于多尺度全卷积密集神经网络进行训练,得到深度图;对所述深度图进行放大处理,得到与所述待处理图像的尺寸大小相同的深度图;其中对所述缩放图像基于多尺度全卷积密集神经网络进行训练包括:对所述缩放图像进行特征提取,得到浅层特征;通过多尺度模块对所述浅层特征进行特征连接,得到深层特征;将所述深层特征与处理后的浅层特征进行特征连接,得到所述深度图。本发明实施例提供的方法通过多尺度全卷积密集神经网络对待处理图像进行训练,不仅可以大幅提高单目深度估计的准确率,还能提高单目深度估计的精度。

    一种单目深度估计方法
    2.
    发明公开

    公开(公告)号:CN110060286A

    公开(公告)日:2019-07-26

    申请号:CN201910340694.6

    申请日:2019-04-25

    Applicant: 东北大学

    Abstract: 本发明实施例涉及一种单目深度估计方法,其包括:获取待处理图像,并对所述待处理图像进行缩放处理,得到缩放图像;对所述缩放图像基于多尺度全卷积密集神经网络进行训练,得到深度图;对所述深度图进行放大处理,得到与所述待处理图像的尺寸大小相同的深度图;其中对所述缩放图像基于多尺度全卷积密集神经网络进行训练包括:对所述缩放图像进行特征提取,得到浅层特征;通过多尺度模块对所述浅层特征进行特征连接,得到深层特征;将所述深层特征与处理后的浅层特征进行特征连接,得到所述深度图。本发明实施例提供的方法通过多尺度全卷积密集神经网络对待处理图像进行训练,不仅可以大幅提高单目深度估计的准确率,还能提高单目深度估计的精度。

Patent Agency Ranking