一种基于pointpillars的多平面编码点云特征深度学习模型的构建方法

    公开(公告)号:CN111612059B

    公开(公告)日:2022-10-21

    申请号:CN202010425656.3

    申请日:2020-05-19

    Applicant: 上海大学

    Abstract: 本发明属于计算机视觉技术领域,具体公开了一种基于pointpillars的多平面编码点云特征深度学习模型的构建方法。构建方法为:获取训练样本,采用训练样本对多平面编码点云特征深度学习模型进行训练,使得将训练样本中的点云数据输入训练后的多平面编码点云特征深度学习模型得到的识别结果为点云数据中检测目标的位置边界框坐标及边界框坐标中目标的存在概率。本发明构建的多平面编码点云特征深度学习模型能够实现对点云数据三维空间采样,并将采样得到三个平面内支柱点云特征进行学习融合,解决了现有点云采样空间信息损失的问题,更好的还原了点云在空间中各个方向上角度不同带来的检测精度的损失,模型的鲁棒性好,检测准确度高。

    一种基于pointpillars的多平面编码点云特征深度学习模型的构建方法

    公开(公告)号:CN111612059A

    公开(公告)日:2020-09-01

    申请号:CN202010425656.3

    申请日:2020-05-19

    Applicant: 上海大学

    Abstract: 本发明属于计算机视觉技术领域,具体公开了一种基于pointpillars的多平面编码点云特征深度学习模型的构建方法。构建方法为:获取训练样本,采用训练样本对多平面编码点云特征深度学习模型进行训练,使得将训练样本中的点云数据输入训练后的多平面编码点云特征深度学习模型得到的识别结果为点云数据中检测目标的位置边界框坐标及边界框坐标中目标的存在概率。本发明构建的多平面编码点云特征深度学习模型能够实现对点云数据三维空间采样,并将采样得到三个平面内支柱点云特征进行学习融合,解决了现有点云采样空间信息损失的问题,更好的还原了点云在空间中各个方向上角度不同带来的检测精度的损失,模型的鲁棒性好,检测准确度高。

Patent Agency Ranking