一种小型化高分辨高帧率光纤内窥成像装置及方法

    公开(公告)号:CN114504292A

    公开(公告)日:2022-05-17

    申请号:CN202210401135.3

    申请日:2022-04-18

    Abstract: 本发明公开了一种小型化高分辨高帧率光纤内窥成像装置及方法,装置包括激光器、光电探测器、控制电路板、算力服务器,物光的光路上设有声光偏转器、二向色镜、单根光纤以及相机,本装置在实时成像之前需对当前光纤的传输特性进行标定,对当前光纤的传输特性进行标定时,将光纤的输出端连接至相机,将相机采集的标定数据经控制电路板传递至算力服务器保存,用于光纤图像解调时使用;进行对样品的成像时,将相机从光纤输出端卸下,并将样品放置于光纤的输出端,本发明光路系统所包含的光学元件数量较少,体积较小,可显著减小光纤内窥装置的整体体积,有利于光纤内窥装置的小型化,可实现高分辨,高帧率的光纤内窥图像。

    一种分布式光纤布拉格光栅传感器测控系统

    公开(公告)号:CN114383640A

    公开(公告)日:2022-04-22

    申请号:CN202111547279.1

    申请日:2021-12-16

    Abstract: 本发明公开了一种分布式光纤布拉格光栅传感器测控系统。FPGA经超辐射发光二极管驱动电路和超辐射发光二极管连接,同时FPGA经制冷片驱动电路和半导体制冷片连接,FPGA经制冷片驱动电路和半导体制冷片连接,两个半导体制冷片布置在超辐射发光二极管和阵列波导光栅解调芯片上,阵列波导光栅解调芯片经低噪声电流电压转换电路和FPGA连接;超辐射发光二极管发光照到分布式光纤布拉格光栅传感器反射回光信号进入阵列波导光栅解调芯片。本发明通过更改跨阻放大器的电流/电压的转换增益提高信噪比,通过FPGA差分管脚实现电压信号的采集,不借助外部的电压转换芯片,降低电路应用复杂度,实现提高相邻通道光功率比值的准确度。

    一种微分干涉对比显微内窥成像系统及内窥成像方法

    公开(公告)号:CN113670854A

    公开(公告)日:2021-11-19

    申请号:CN202110924675.5

    申请日:2021-08-12

    Abstract: 本发明公开了一种微分干涉对比显微内窥成像系统及内窥成像方法,所述显微内窥成像系统包括照明光源、光导纤维、照明光路模块、成像接收模块和电缆。本发明显著特征是增强被观察物体的对比度,该技术利用微分干涉棱镜生成寻常光(o光)和非寻常光(e光),由于两束相干光经过物体后改变了光程差,并在像面发生干涉,使样品表面高度的微小变化在干涉背景上以强烈的光强变化表现出来,形成一种浮雕感,可以观形象地反映出样品表面微观轮廓。微分干涉显微技术可以实现对样品表面纳米级的相位分辨率,观察到样品表面的微细结构,有助于帮助医生通过被观测样品的表面起伏特征判断病灶特征做出诊断。

    一种基于空间分步式移频照明的缺陷检测系统

    公开(公告)号:CN112326665A

    公开(公告)日:2021-02-05

    申请号:CN202011039692.2

    申请日:2020-09-28

    Abstract: 本发明公开了一种基于空间分步式移频照明的缺陷检测系统,包括光源、显微物镜、管镜、图像探测器、控制模块和数据处理模块,其中,光源包括垂直照明光源和倾斜照明单元。垂直照明光源和各倾斜照明单元的出射光能够照射到被观测样品上而激发出散射场,散射场经显微物镜收集后再经管镜整形而入射到图像探测器,并由数据处理模块转换成远场强度图。控制模块按时序控制各光源的点亮以及各光源照明下图像探测器对被观测样品散射场信号的采集。数据处理模块通过对被观测样品空间频谱信息的重构,最终实现无论是在透射式照明还是反射式照明条件下,被观测样品表面复杂缺陷特征轮廓信息和细节特征信息的检测成像。

    一种内窥图像的景深扩展方法及装置

    公开(公告)号:CN117710233A

    公开(公告)日:2024-03-15

    申请号:CN202410162617.7

    申请日:2024-02-05

    Abstract: 本发明公开了一种内窥图像的景深扩展方法及装置,该方法包括接收不同聚焦平面对应的原始图像;设计编码‑解码网络模型用于获取内窥图像的底层特征;利用高维空间频率对底层特征进行焦点度量分析得到初始决策图以及初始融合图像;同时确定边界区域范围并据此设计边界度量指标修复焦面边界过渡,得到最终的融合图像。该装置主要包括图像采集模块,图像融合模块,图像修复模块,图像显示模块。本发明降低了图像融合方法在实际内窥镜系统应用中对不同相机采集的图像之间的高配准要求,并且可有效地实现内窥镜系统的景深扩展,为医生临床诊断提供技术支持;本发明在景深扩展性能、处理速度和性价比等方面均优于现有景深扩展系统。

    一种基于二维特征点的双目内窥图像三维拼接方法

    公开(公告)号:CN112862687B

    公开(公告)日:2023-10-31

    申请号:CN202110204642.3

    申请日:2021-02-24

    Abstract: 本发明公开了一种基于二维特征点的双目内窥图像三维拼接方法,该方法包括点云生成、点云预处理、二维特征点匹配、点云配准等步骤,移动双目内窥镜获取各视角的左右图序列后,通过SGBM(Semi‑global block matching)进行双目匹配生成点云,并进行离群点剔除和降采样等预处理,对相邻左视图采用SURF(Speeded Up Robust Features)算法进行二维特征匹配,计算两个视点偏移量,改变初始矩阵平移矩阵,通过ICP(Iterative Closest Point)算法对点云进行配准和拼接,本方法实现了对纹理特征不明显的内窥图像的三维重建,扩大了视场,同时利用双目图像获得稠密点云,重建精度高,能更好地协助医生手术操作。

    一种光纤荧光仿生模体及其生成方法、应用

    公开(公告)号:CN115719023B

    公开(公告)日:2023-08-22

    申请号:CN202211484697.5

    申请日:2022-11-24

    Abstract: 本发明公开了一种光纤荧光仿生模体及其生成方法、应用,该方法将仿生基质材料、散射粒子均匀混合,并嵌入光纤,固化形成仿体模型;根据目标荧光分子的光谱、光强,选择荧光发射源,荧光发射源出射光束,对出射光束的光谱、光强进行调控,耦合进入光纤,经光纤散射后通过仿体模型传播到自由空间中,以模拟生成荧光信号,得到荧光仿生模体。本发明通过光束、光纤和仿生组织的相互配合,使得仿体模型空间分布具备高可控性和精细三维结构,荧光信号具备高稳定性和多样性,光纤荧光仿生模体具备高仿真度。其实现方法简便,手段灵活,成本较低,可用作荧光成像系统的标准测试模型。

    一种基于平面光波导技术的光学相干层析内窥成像系统

    公开(公告)号:CN115989990B

    公开(公告)日:2023-07-14

    申请号:CN202310294155.X

    申请日:2023-03-24

    Abstract: 本发明公开了一种基于平面光波导技术的光学相干层析内窥成像系统,其中宽带扫频光源发出的光信号依次经过保偏光纤起偏器、偏振控制器、保偏光纤环形器、宽带可调谐光波导耦合器而分为两束,分别进入参考臂和样品臂,参考臂和样品臂中返回的光信号在宽带可调谐光波导耦合器中发生干涉并分为两束光信号,一束经保偏光纤环形器进入宽带3 dB耦合器,另一束直接进入宽带3 dB耦合器,宽带3 dB耦合器输出的两束等功率光信号通过平衡探测器进行差分探测,差分探测的结果经数据采集卡的模数转换上传到数据处理器,从而进一步得到样品的层析信息,其中样品臂中被样品环绕的内窥探头对样品进行螺旋式扫描,得到不同深度的所述样品反射的光信号。

    一种扭转应力释放原理的光纤形状传感器及制作方法

    公开(公告)号:CN116182734A

    公开(公告)日:2023-05-30

    申请号:CN202211634118.0

    申请日:2022-12-19

    Abstract: 本发明提供了一种扭转应力释放原理的光纤形状传感器及制作方法,光纤形状传感器包括用于实时感知光纤三维形状的光纤光栅传感器和用于抗扭转的超弹性套管组成;光纤光栅传感器包括光纤传感信号传输部和光纤形状传感部,光纤传感信号传输部和光纤形状传感部均为多芯光纤,光纤形状传感部刻制有布拉格光栅;超弹性套管由固定连接的固定头、导管组成,固定头固定于光纤传感信号传输部和光纤形状传感部的连接处,导管套设在光纤形状传感部外。本发明采用超弹性套管释放扭转应力,隔绝扭矩,防止光纤光栅传感器受到外界扭矩影响而发生扭转,使光纤光栅传感器只会产生弯曲形变。提高了光纤三维形状重构的精度,有利于光纤光栅传感器大规模应用。

    一种中画幅双焦距镜头光学系统
    90.
    发明公开

    公开(公告)号:CN115576087A

    公开(公告)日:2023-01-06

    申请号:CN202211340167.3

    申请日:2022-10-27

    Abstract: 本发明涉及一种中画幅双焦距镜头光学系统,通过13片透镜形成光焦度依次为“负‑正‑正‑负”四组架构,从物方到像方沿光轴依次同轴设置固定组、变倍组、补偿组、对焦组,孔径光阑放置在补偿组两透镜中间固定位置。变倍组可沿光轴移动,用于实现广角端和长焦端之间的光学变焦,补偿组和对焦组可沿光轴移动,用于补偿变焦镜头在光学变焦过程中像面位置的变化。孔径光阑随补偿组移动使光圈在广角端和长焦端基本不变。本发明实现了双焦距镜头高倍率与小体积的兼容,同时保证双焦段(广角端和长焦端)满足高分辨率,兼顾低畸变成像性能和大视场角。通过本发明技术方案的改进,满足中画幅光学成像相机在更大视场、更高分辨率、更小畸变等方面的需求。

Patent Agency Ranking