-
公开(公告)号:CN115683629B
公开(公告)日:2023-06-27
申请号:CN202211398933.1
申请日:2022-11-09
Applicant: 苏州大学
IPC: G01M13/045 , G06F17/15
Abstract: 本发明涉及一种轴承故障检测方法包括:获取测试轴承的振动加速度时域信号,经短时傅里叶变换生成时频域系数矩阵;利用广义极小极大凹罚函数与截断核范数构建稀疏低秩优化模型的凸性目标函数;利用交替方向乘子法将凸性目标函数拆分成关于广义极小极大凹罚函数的第一子目标函数、关于截断核范数的第二子目标函数与辅助迭代函数;利用前向后向分裂算法求解第一子目标函数得关于Xk+1的迭代公式组;利用奇异值阈值算法求解第二目标子函数得关于Zk+1的迭代公式;初始化参数,将时频域系数矩阵输入辅助迭代函数中,迭代预设次数获取时频域稀疏低秩矩阵;对时频域稀疏低秩矩阵进行短时傅里叶逆变换得到重构时域信号后,进行平方包络谱分析,得到故障特征频率。
-
公开(公告)号:CN116108346A
公开(公告)日:2023-05-12
申请号:CN202310126044.8
申请日:2023-02-17
Applicant: 苏州大学
IPC: G06F18/213 , G06F18/24 , G06F18/214 , G06N3/0475 , G06N3/094
Abstract: 本发明涉及一种基于生成特征重放的轴承增量故障诊断终身学习方法,包括:将轴承状态数据集划分为多个不同诊断阶段;学习初始阶段的灰度图片样本,训练第一特征提取器和第一分类器;使用第一特征提取器提取的特征,利用对抗生成网络交替训练,得到第一特征生成器;构建原始故障诊断模型,设置其全连接层神经元数量为初始阶段故障类型数量;在增量学习阶段,利用n‑1阶段的原始故障诊断模型,训练更新n阶段的故障诊断模型,利用特征蒸馏损失函数缩小第n特征提取器与第n‑1特征提取器提取的特征的差异,利用重放对齐损失约束第n特征生成器与第n‑1特征生成器生成的特征相似,更新全连接层神经元数量为初始阶段至第n阶段故障类型数量总和,得到最终故障诊断模型。
-
公开(公告)号:CN116007937A
公开(公告)日:2023-04-25
申请号:CN202211575101.2
申请日:2022-12-08
Applicant: 苏州大学
IPC: G01M13/028 , G06F18/15 , G06F18/213 , G06F18/24 , G06F18/214 , G06F18/2415 , G06N3/0455 , G06N3/0895
Abstract: 本发明涉及机械设备智能运维技术领域,尤其是指一种机械设备传动部件智能故障诊断方法及装置。本发明采集不同工况下的振动信号作为训练样本,避免了由于工况改变导致模型性能下降的问题,通过建立自监督预训练网络,充分利用了容易获取的无标签样本训练网络,使网络能够提取更有效的特征,减少对标签样本的依赖;另外,通过基于自注意力机制的编码器模型和解码器模型,提取更全面的全局特征,同时抑制冗余特征,增强有效特征,无需通过预处理对输入数据进行预增强,提高了诊断效率。
-
公开(公告)号:CN112629863B
公开(公告)日:2022-03-01
申请号:CN202011632478.8
申请日:2020-12-31
Applicant: 苏州大学
IPC: G01M13/045 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种变工况下动态联合分布对齐网络的轴承故障诊断方法,包括以下步骤:采集不同工况下的轴承振动数据,获得源域样本和目标域样本;构建动态联合分布对齐的深度卷积神经网络模型;将源域样本和目标域样本同时送入参数初始化的深度卷积神经网络模型,特征提取器提取源域样本和目标域样本的高层次特征;计算边缘分布距离和条件分布距离;根据边缘分布距离和条件分布距离获得联合分布距离,将联合分布距离与标签损失结合以获得目标函数;利用随机梯度下降法对目标函数进行优化,训练深度卷积神经网络模型。其能够降低域漂移的影响,使得深度学习模型能够很好完成变工况下的故障诊断任务,速度快,运算量小。
-
-
公开(公告)号:CN109668733B
公开(公告)日:2020-07-28
申请号:CN201811571587.6
申请日:2018-12-21
Applicant: 苏州大学
IPC: G01M13/045
Abstract: 本发明公开了一种变分非线性模式分解变转速轴承故障诊断方法。本发明一种变分非线性模式分解变转速轴承故障诊断方法,包括:利用振动信号传感器收集滚动轴承动态信号;从振动信号中分离出低频区域,并采用快速谱峭度方法识别出共振带,从而实现频带分离;采用脊线提取算法分别在低频区域提取转频曲线和在共振频带提取故障特征频率曲线,得到粗略的频率信息;以提取出的粗略频率信息作为初始值,通过变分非线性模式分解方法进行优化分析,以获取准确估计的转频和故障特征频率;对优化后的转频和故障特征频率进行特征阶次计算,并比对理论值判断故障类型。
-
公开(公告)号:CN110060368B
公开(公告)日:2020-03-10
申请号:CN201910323189.0
申请日:2019-04-22
Applicant: 苏州大学
Abstract: 本发明公开了一种基于潜在特征编码的机械异常检测方法。本发明一种基于潜在特征编码的机械异常检测方法,包括:数据预处理:对振动信号数据进行预处理,包括傅立叶变换和归一化;正向传播:将预处理完的信号输入第一个全卷积网络,对数据进行编码。本发明的有益效果:本方法针对异常样本缺失问题,利用深度网络的特征挖掘能力,学习正常信号样本的数据分布,通过对信号进行编码‑解码‑再编码,将信号转移到潜在空间中进行数据分布对比。
-
公开(公告)号:CN110555273A
公开(公告)日:2019-12-10
申请号:CN201910838978.8
申请日:2019-09-05
Applicant: 苏州大学
IPC: G06F17/50
Abstract: 本发明公开一种基于隐马尔科夫模型和迁移学习的轴承寿命预测方法,包括步骤(1)采集滚动轴承的全寿命原始信号;并提取包含时域、时频域和三角函数特征的特征集合;(2)将特征集合输入隐马尔科夫模型预测隐状态,获取故障发生时刻;(3)将来自所有源域和部分目标域的特征集合组成训练集输入构建的多层感知机模型,通过优化目标训练获得域不变特征和最优模型参数,将最优模型参数代入感知机模型获得神经网络寿命预测模型;(4)将剩余的目标域特征集输入神经网络寿命预测模型,根据输出值预测轴承的剩余寿命。本发明利用隐马尔科夫模型自动检测出故障发生时刻,之后采用基于多层感知器的迁移学习来解决不同工况条件造成的源域和目标域的分布差异。
-
公开(公告)号:CN110174270A
公开(公告)日:2019-08-27
申请号:CN201910496586.8
申请日:2019-06-10
Applicant: 苏州大学
IPC: G01M13/045 , G06K9/00
Abstract: 本发明公开了一种基于快速路径最优搜索和动态基角度的多源时频脊线提取方法。本发明提供了一种基于快速路径最优搜索和动态基角度的多源时频脊线提取方法,包括:步骤1:短时傅里叶变换及频带的选择。对振动信号中采用短时傅里叶分析,将轴承信号分为低频段和共振频带。本发明的有益效果:1、该发明首先应用快速路径最优搜索策略,得到连续和准确的瞬时频率脊线,然后在得到的脊线的基础上,计算对应时刻点的切角,得到频率与目标信号频率相匹配的基函数,适用于处理变转速非平稳状态下的滚动轴承振动信号。
-
公开(公告)号:CN108152025B
公开(公告)日:2019-08-06
申请号:CN201711376491.X
申请日:2017-12-19
Applicant: 苏州大学
IPC: G01M13/00
Abstract: 本发明公开了一种自适应变分模式分解的机械微弱故障诊断方法。首先利用振动信号传感器收集机械设备动态信号;然后给定一个初始平衡参数以及设定变分模式分解方法提取分量的个数为一个;然后,利用变分模式分解方法对设备动态信号进行迭代分解,并以峭度或稀疏度等故障特征敏感参数为衡量指标计算分解出的模式分量,直到确定变分模式分解方法分解出含有故障信息的分量停止迭代分解;其次,将迭代分解出的干扰分量从原始设备动态信号中剔除。该发明克服了传统变分模式分解方法中最优平衡参数以及合理的分解模式分量的数目自适应选择的难题,能够自适应地提取出机械设备动态信号中的故障成分,且易操作,具有广泛应用的前景。
-
-
-
-
-
-
-
-
-