一种亚阈值全CMOS基准电压源

    公开(公告)号:CN105278606A

    公开(公告)日:2016-01-27

    申请号:CN201510779707.1

    申请日:2015-11-12

    Abstract: 本发明公开一种亚阈值全CMOS基准电压源,启动电路帮助基准电压源摆脱简并偏置点,进入正常工作状态。亚阈值运算放大器保证低功耗的同时,提供更大的增益,提高电源电压抑制比。纳安基准电流产生电路产生纳安量级的基准电流,抑制电源噪声,为基准电压产生电路提供电流偏置。基准电压产生电路采用2种具有不同标准电压的MOS管栅源电压差,通过相互调节,得到一个与温度无关的参考电压。本发明未使用无源电阻、二极管或者三极管,与标准CMOS工艺兼容,大大减小了版图面积,降低了生产成本,功耗低,同时具有高电源抑制比、低温漂系数和低电源电压调整率。

    一种尾流反馈宽调谐压控振荡器

    公开(公告)号:CN105071773A

    公开(公告)日:2015-11-18

    申请号:CN201510540317.9

    申请日:2015-08-28

    Abstract: 本发明公开了一种尾流反馈宽调谐压控振荡器,包括1个振荡核心电路,1个尾流阵列电路和2个结构完全相同的输出驱动电路。振荡核心电路跨接在第一输出驱动电路和第二输出驱动电路之间。第一输出驱动电路形成振荡器的一个输出端,第二输出驱动电路形成振荡器的另一个输出端。尾流阵列电路的一端分别连接偏置电压和第一输出驱动电路。尾流阵列电路的另一端分别连接偏置电压和第二输出驱动电路。采用了随同开关电容接入变化的尾流源阵列,使压控振荡器在宽的调谐范围内都能具有较好相位噪声性能;同时通过隔直电容从输出驱动漏极为主尾流管NM21、NM22的栅极提供反馈偏置,减小了尾流管引入的闪烁噪声,进一步优化了相位噪声性能。

    去多址干扰的跳时脉冲位置调制超宽带数字接收机及方法

    公开(公告)号:CN105007098A

    公开(公告)日:2015-10-28

    申请号:CN201510214547.6

    申请日:2015-04-29

    Abstract: 本发明公开一种去多址干扰的跳时脉冲位置调制超宽带数字接收机及方法,本地TH-PPM信号产生器产生0码和1码TH-PPM信号。去多址干扰器将检波接收到的信号与本地TH-PPM信号做与运算,去除接收信号中的多址干扰信息。相关检测器对去多址干扰器输出的信号与本地TH-PPM信号进行相关运算。起始同步器让本地TH-PPM信号产生器的PN码与接收到的信号的PN码同步,同步完成后输出一个同步锁定信号。失步检测模块根据相关器输出的信号判断本地TH-PPM信号产生器的PN码是否与接收到的信号的PN码同步。数据恢复模块在同步锁定信号为高电平时将接收到的数据解调输出。本发明能够消除多址干扰,提高接收信号的可靠性。

    一种快速瞬态响应CMOS低压差线性稳压器

    公开(公告)号:CN104679086A

    公开(公告)日:2015-06-03

    申请号:CN201510127253.X

    申请日:2015-03-23

    Abstract: 本发明公开一种快速瞬态响应CMOS低压差线性稳压器,其误差放大电路的反相输入端与基准电压Vref相连,误差放大电路的同相输入端与取样电阻电路的取样输出端Vf相连,误差放大电路的输出端经转换速率增强电路连接功率管的栅极;误差放大电路的电源正端、转换速率增强电路的电源正端和功率管的源极相连后,形成稳压器本体的输入端Vin;功率管的漏极与取样电阻的电源正端相连后,形成稳压器本体的输出端Vout;误差放大电路的电源负端、转换速率增强电路的电源负端和取样电阻的电源负端相连后,形成稳压器本体的地端GND。本发明具有较高的转换速率和瞬态响应。

    一种无线远程多用户心电监护系统及其方法

    公开(公告)号:CN104287722A

    公开(公告)日:2015-01-21

    申请号:CN201410623448.9

    申请日:2014-11-07

    CPC classification number: A61B5/0402 A61B5/0006 A61B5/0022

    Abstract: 本发明公开一种无线远程多用户心电监护系统及其方法,其系统主要由远程监护站、本地接收端和至少一个便携式心电监护仪组成。便携式心电监护仪对用户进行实时心电监测,获得用户实时心电信号。本地接收端接收便携式心电监护仪的所测心电数据,并对其进行自动诊断分析,出现异常时会发出声音和短信报警。同时,本地接收端可将数据通过互联网传送到远程监护站,对所测心电数据进行人为诊断分析,实现远程实时监护。本发明能够随时随地监控用户的心电信号,并实时进行初步诊断,为及时治疗提供保证;这样可以对病人进行远程诊断,提前预警,为病人争取治疗时间,减小病情偶然性和突发性带来的危险。

    一种适用于高速DAC的电流开关驱动器

    公开(公告)号:CN112054797B

    公开(公告)日:2025-04-04

    申请号:CN202011050494.6

    申请日:2020-09-29

    Abstract: 本发明公开一种适用于高速DAC的电流开关驱动器,由同步锁存电路、限幅低交叉电路和电流开关电路组成;同步锁存电路的同步锁存电路输入采样时钟信号CLK和输入信号VIN;同步锁存电路的同步锁存信号DP和DN的输出端分别连接限幅低交叉电路的同步锁存信号DP和DN的输入端;限幅低交叉电路的开关驱动信号DSP和DSN的输出端分别连接电流开关电路的开关驱动信号DSP和DSN的输入端连接;电流开关电路输出输出信号OUTP和OUTN。本发明能够有效降低开关信号幅度和开关信号交叉点,并减小版图的面积。

    一种负压断路关断型CMOS射频整流器

    公开(公告)号:CN108964486B

    公开(公告)日:2024-02-06

    申请号:CN201811097892.6

    申请日:2018-09-20

    Abstract: 本发明公开一种负压断路关断型CMOS射频整流器,包括负压产生单元、电平移位单元和可断路关断射频整流单元;负压产生单元和可断路关断射频整流单元的差分输入正端接正射频信号RF+;负压产生单元和可断路关断射频整流单元的差分输入负端接负射频信号RF‑;电平移位单元的的电源极接电源VDD,电平移位单元的控制端接控制信号VCTR;负压产生单元的输出连接电平移位单元的输入端;电平移位单元的输出接可断路关断射频整流单元的输入端;可断路关断射频整流单元的输出端作为整个整流器的输出端。本发明在使能状态时具有较高的PCE,在关断状态时具有较低的POFF,电路结构简单,设计容易,版图面积小,降低生产成本。

    一种阶数可控的CMOS多阶射频整流器

    公开(公告)号:CN108649822B

    公开(公告)日:2024-01-09

    申请号:CN201810750358.4

    申请日:2018-07-10

    Abstract: 本发明公开一种阶数可控的CMOS多阶射频整流器,包括1个基本差分整流单元、n‑1个使能差分整流单元和n个控制单元。本发明通过地端控制的接入,降低整流器的关断功耗,主要解决现有技术关断功耗较大的问题,并且可对本结构进行扩展级联得到的阶数可控n阶整流器,可以实现工作阶数可控功能,实现最大功率工作。本发明能够显著降低整流器的关断功耗,为多阶整流器低功耗待机提供一种参考方案。

    具有内阻自适应的最大功率追踪电路及DC-DC升压电路

    公开(公告)号:CN110224593B

    公开(公告)日:2023-12-01

    申请号:CN201910542822.5

    申请日:2019-06-21

    Abstract: 本发明公开具有内阻自适应的最大功率追踪电路及DC‑DC升压电路,最大功率追踪电路采用开关延时生成电路与开关延时综合电路相结合的电路结构,开关延时生成电路将输入电容上的电压与最大功率点电压进行比较,开关延时综合电路实时根据环境能量源的内阻大小自适应生成不同长短的延时时间,以此生成携带了输入内阻大小信息的开关信号;DC‑DC升压电路利用最大功率追踪电路所生成的携带了输入内阻大小信息的开关信号S0,不仅能够保证其在输入电压的变化范围较宽时系统仍具有较高的追踪效率,追踪效率最高可达99.64%;而且能够保证其在环境能量源的内阻较大的范围内仍具备较高的能量转换效率,能量转换效率最高可达96.25%。

    一种适用于双源能量收集系统的最大功率同步追踪电路

    公开(公告)号:CN109634348B

    公开(公告)日:2023-09-29

    申请号:CN201811517848.6

    申请日:2018-12-12

    Abstract: 本发明公开一种适用于双源能量收集系统的最大功率同步追踪电路,包括上升沿检测器A1‑A2,SR锁存器A3,比较器A4‑A5,开关控制电路A6,缓冲器A7‑A9,功率源P1‑P2,最大功率点电压采样电路A10‑A11,电容Cin1‑Cin2,NMOS管NM1‑NM3,电感L1,PMOS管PM1,以及过零比较器A12。本发明通过同时对两个输入能量源的最大功率点电压进行追踪,减小了控制电路的功耗,并提高了追踪效率,追踪效率最大可以达到99.98%,提高了能量的利用率;系统验证表明当输入能量源的输入功率分别为5uW和1mW时,电路的能量转换效率最大能达到85.59%。

Patent Agency Ranking