-
公开(公告)号:CN109796038A
公开(公告)日:2019-05-24
申请号:CN201910035131.6
申请日:2019-01-15
Applicant: 桂林电子科技大学
Abstract: 本发明提供了一种分级纳米多孔氧化铜材料,以棒状金属有机框架为前驱体制备得到,材料的形貌是由均匀纳米颗粒构成的棒状结构,比表面积范围在20-80 m2 g-1。其制备方法包括以下步骤:1)棒状金属有机框架前驱体制备;2)热解处理。作为检测葡萄糖含量传感器的应用:先获得葡萄糖浓度与电流之间的线性关系;再对待测葡萄糖溶液浓度进行检测。检测时间少于4 s,检测范围为50-300μmol L-1,相关系数R范围为0.9992-0.9999。本发明具有以下优点:1、操作简单、效率高、可重复性高、易于生产;2、具有高的电催化活性和高传感性能。本发明材料对葡萄糖溶液具有明显的响应,在电化学传感器领域具有广阔的应用前景。
-
公开(公告)号:CN109046419A
公开(公告)日:2018-12-21
申请号:CN201810713714.5
申请日:2018-07-03
Applicant: 桂林电子科技大学
CPC classification number: B01J27/24 , B01J35/1004 , B01J35/109 , C01B3/06
Abstract: 本发明公开了一种负载钌的银杏叶基多孔碳材料,银杏叶作为碳源,经过低温碳化后,加入含氮化合物及碱性无机物,经煅烧活化后得到银杏叶基多孔碳材料,然后通过原位还原法将金属钌负载到多孔碳材料上,得到一种负载钌的银杏叶基多孔碳材料。其制备方法包括以下步骤:1)银杏叶的低温碳化;2)银杏叶基多孔碳材料的活化及后处理;3)金属钌的负载。作为氨硼烷水解制氢催化剂,室温下40 s完成放氢,放氢量为理论值的92%,放氢速率达到3718 ml s‑1 g‑1。可以循环使用,五次循环后,60 s完成放氢,放氢速率为2158 ml s‑1 g‑1,保持初次放氢速率的58%。通过不同温度下催化氨硼烷水解测试,显示较低的活化能Ea=23.86 kJ mol‑1。在制氢材料、燃料电池等领域具有广阔的应用前景。
-
公开(公告)号:CN108831756A
公开(公告)日:2018-11-16
申请号:CN201810707466.3
申请日:2018-07-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于ZIF-8掺杂镍、钴的多孔碳复合材料,由ZIF-8材料掺杂Co、Ni离子后,进行高温煅烧、去除ZnO制得。以掺杂了镍、钴的ZIF-8材料为前驱体,采用一步煅烧法,将镍、钴氧化物均匀地分散在多孔碳的孔道内。其制备方法包括:1)将ZIF-8加入NiSO4和CoSO4的混合溶液中搅拌反应,得到前驱体;2)将前驱体煅烧;3)用强碱溶液去除ZIF-8中残余的ZnO。作为超级电容器电极材料的应用,比电容为15002000 F/g。本发明不仅表现出双电层电容性能,而且表现出法拉第电容性能,因而用于超级电容器的电极材料表现出良好的性能。
-
公开(公告)号:CN106531466B
公开(公告)日:2018-10-19
申请号:CN201611016452.4
申请日:2016-11-18
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种三元氧化物复合材料的制备及其在超级电容器领域的应用。本发明采用原位化学还原法在水溶液中制备了Co‑Ni‑B合金材料,然后该合金和高锰酸钾进行氧化还原反应,得到Co3O4‑Ni3O4‑MnO2三元氧化物。本发明利用Co‑Ni‑B合金的强还原性和高锰酸钾的强氧化性,使两者发生氧化还原反应,Co‑Ni‑B被氧化为Co3O4‑Ni3O4,同时高锰酸钾被还原为MnO2,具有方法简单,应用范围广和制造成本低等优点,而且三种氧化物复合在一起,由于材料之间的协同作用,使得其具有优良的储电特性,将其用于超级电容器的电极材料,表现出良好的电化学性能。而且该方法适合大批量的生产,应用效果好。
-
公开(公告)号:CN106504905B
公开(公告)日:2018-09-07
申请号:CN201611016365.9
申请日:2016-11-18
Applicant: 桂林电子科技大学
CPC classification number: Y02E60/13
Abstract: 本发明公开了一种Co‑Ni‑W合金氧化物‑石墨烯复合材料的制备方法及在超级电容器领域的应用。本发明采用原位化学还原法在乙腈溶液中制备了Co‑Ni‑W/石墨烯复合材料,然后再双氧水溶液中进行氧化,得到三维花状Co‑Ni‑W合金氧化物‑石墨烯复合材料。本发明采用一步法制备了Co、Ni、W三种过渡金属的氧化物,具有方法简单,应用范围广和制造成本低等优点,而且得到了在水溶液中无法得到的花状的纳米颗粒。所制备的三维花状Co‑Ni‑W合金氧化物‑石墨烯复合材料表现出优良的电化学特性,可用超级电容器的电极材料。而且该方法适合大批量的生产,应用效果好。
-
公开(公告)号:CN107958792A
公开(公告)日:2018-04-24
申请号:CN201711071728.3
申请日:2017-11-03
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种碳纳米管嵌入的氮掺杂的碳@CoO核壳结构复合材料,由碳酸钴和含氮高分子树脂混合,经一步碳化得到,具有碳纳米管嵌入的碳@CoO的核壳结构。其制备方法包括:1)三聚氰胺树脂的制备;2)碳酸钴-三聚氰胺树脂粉末的制备;3)碳纳米管嵌入的氮掺杂的碳@CoO核壳结构复合材料的制备。作为超级电容器电极材料的应用,在-0.3-0.4V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到800-900 F/g。本发明采用一步碳化法,工艺简单;碳纳米管和氮掺杂的碳同时生成,提高了材料的导电性;CoO被包覆在碳材料里,提高了材料的导电性,阻止了CoO的腐蚀和充放电过程中的体积收缩,表现出优良的电化学特性和化学稳定性,可用超级电容器的电极材料。
-
公开(公告)号:CN107934913A
公开(公告)日:2018-04-20
申请号:CN201711123813.X
申请日:2017-11-14
Applicant: 桂林电子科技大学
IPC: C01B3/00
Abstract: 本发明公开了一种过渡金属氟化物掺杂的复合储氢材料,该材料由LiBH4、LiNH2、MgH2和过渡金属氟化物混合机械球磨制得。其放氢的初始放氢温度为90℃~100℃,第二步放氢温度在150℃左右,主要放氢在180℃~200℃区间内完成,当加热到200℃时该复合储氢材料放出6.5 wt%~7.0 wt%氢气。其制备方法包括:1)原料的称取;2)球磨法制备复合储氢材料。本发明具有以下优点:1、具有较低的放氢温度和大量放氢温度;2、放氢量大;3、放氢过程大幅减少作为速控步骤的第二步放氢的过程的诱导期,降低第二步放氢的放氢温度,协调两步放氢过程,且放氢反应速率较快,具有好的脱氢动力学性能;4、原料成本低廉,合成方法、工艺简单。在储氢材料领域具有一定的应用前景。
-
公开(公告)号:CN107804836A
公开(公告)日:2018-03-16
申请号:CN201711081630.6
申请日:2017-11-07
Applicant: 桂林电子科技大学
IPC: C01B32/184
Abstract: 本发明公开了一种基于生物高聚物的三维石墨烯,由生物高聚物吸附了Co离子后,再进行高温碳化后,经浓硝酸洗涤后得到,其比表面积为300-400 m2/g,所述的生物高聚物由柿子单宁和壳聚糖制备的固化柿子单宁,采用Co离子作为催化剂,一步碳化法制备。其制备方法包括以下步骤:1)固化柿子单宁粉末的制备;2)前驱体的制备;3)三维石墨烯的制备。本发明采用一步碳化法,工艺简单,产品性能稳定,适合大批量的制备,而且后处理工艺简单,在碳功能材料领域具有广阔的应用前景。
-
公开(公告)号:CN107321383A
公开(公告)日:2017-11-07
申请号:CN201710469472.5
申请日:2017-06-20
Applicant: 桂林电子科技大学
CPC classification number: Y02E60/36 , B01J31/06 , B01J35/023 , B01J35/06 , B01J35/1004 , B01J37/0201 , B01J37/0213 , B01J37/16 , C01B3/065 , D01D5/003 , D01F6/38
Abstract: 本发明公开了一种纳米纤维负载钴银合金材料,由静电纺丝法制备纳米纤维,再通过浸渍化学还原法制备钴粒子,然后通过氧化还原法制备钴银合金并负载到纳米纤维上制得。其制备方法包括以下步骤:1)静电纺丝法制备纳米纤维;2)通过浸渍化学还原法先制备钴粒子;3)通过氧化还原法制备钴银合金并负载到纳米纤维。本发明材料作为氨硼烷水解制氢催化剂的应用时,40 min完成放氢,放氢速率高,循环测试表明,具有优良的循环性能。本发明纳米纤维以圆柱状的形式存在,具有高比表面积,性质稳定,钴银合金均一、稳定地负载到纳米纤维上,分散均匀且不发生团聚,能快速地催化氨硼烷水解制氢,因此,在制氢、燃料电池等领域具有广阔的应用前景。
-
公开(公告)号:CN107170972A
公开(公告)日:2017-09-15
申请号:CN201710367563.8
申请日:2017-05-23
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种氮掺杂CoB合金,由硼氢化钠溶液在超声的条件下还原氯化钴、含氮碱性化合物的混合溶液后,再经洗涤、真空干燥制得,其比表面积为20~50 m2/g,颗粒直径的范围在300~600 nm之间。作为电池负极材料的应用时,电化学容量在100 mA/g的放电电流密度下,首次放电比容量值达500~1000mAh/g,100次循环后为300~500mAh/g,容量保持率为30~50%,极限扩散电流密度为1000~6000mA/g。其制备方法包括:步骤1将氯化钴和含氮碱性化合物溶于水得到混合溶液;步骤2配制硼氢化钠溶液,并以一定的速度滴加到步骤1的混合溶液中得到黑色悬浊液;步骤3将黑色悬浊液过滤,洗涤,干燥后值得。本发明具有均匀的颗粒分布,且电化学动力学性能优良,在二次电池、超级电容器等领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-