-
公开(公告)号:CN114778828B
公开(公告)日:2025-04-01
申请号:CN202210373404.X
申请日:2022-04-11
Applicant: 扬州大学
IPC: G01N33/543 , G01N21/25
Abstract: 本发明涉及免疫学分析检测技术内一种基于Co3O4磁性纳米粒子信号放大探针的SPR免疫传感器,第1步,将Co3O4磁性纳米粒子表面修饰羧基,并活化,再连接二级抗体Ab2,制得Co3O4 NPs‑Ab2纳米信号放大探针;第2步,将SPA蛋白固定于表面等离子体共振免疫传感器SPR基底,再连接捕获抗体Ab1后用牛血清白蛋白封闭,接着先后通入抗原溶液和Co3O4 NPs‑Ab2信号放大探针,温育形成三明治夹心的SPR免疫传感器。本发明的羧基化的Co3O4纳米粒子,其高折射率和高分子量可有效増强SPR信号,同时通过在外部磁场中分离和富集复杂样品中的靶标,可以极大减少未知化合物的背景干扰,具有良好的生物相容性,制备信号放大探针,结合三明治夹心法,使SPR信号增强,用于蛋白分子的高灵敏检测。
-
-
公开(公告)号:CN115849447B
公开(公告)日:2023-11-07
申请号:CN202211601937.5
申请日:2022-12-14
Applicant: 扬州大学
IPC: C01G39/02 , C01G23/047 , C01B32/15 , H01M4/583 , H01M4/48 , H01M10/0525
Abstract: 本发明涉及锂离子电池材料技术领域内一种二氧化钼@二氧化钛@氮掺杂碳纳米复合材料及其锂离子电池负极的制备方法,以聚苯乙烯球为模板,无水乙醇为溶剂,以钛酸四丁酯为钛源,在乙腈和氨水存在的条件下,搅拌反应制备核壳结构的PS@TiO2纳米球,然后在氮气保护下煅烧获得中空的TiO2纳米球;再将中空的TiO2纳米球分散在去离子水中,以四水合钼酸铵为钼源,在聚乙烯吡咯烷存在的条件下水热法,在中空的TiO2纳米球内封装二氧化钼纳米粒子,得到核壳结构MoO2@TiO2纳米球;再将MoO2@TiO2纳米球与盐酸多巴胺分散液Tris缓冲液,搅拌反应制备聚多巴胺包裹的MoO2@TiO2@PDA微球,最后将MoO2@TiO2@PDA微球氮气保护下煅烧得到综合电性能优良的多孔核壳结构的二氧化钼@二氧化钛@氮掺杂碳纳米复合材料MoO2@TiO2@NC。
-
公开(公告)号:CN112730338B
公开(公告)日:2023-03-24
申请号:CN202011527815.7
申请日:2020-12-22
Applicant: 扬州大学
IPC: G01N21/552 , G01N33/68
Abstract: 本发明涉及免疫学分析检测技术领域内一种基于Ag@Au的多孔结构的双信号纳米放大探针及其SPR免疫检测的方法。本发明首先以氯金酸为金源,硝酸银为银源,超纯水作为溶剂,过氧化氢为刻蚀溶剂,合成了多孔Ag@Au核壳纳米粒子复合材料,再利用MUA将Ag@Au核壳纳米粒子表面羧基功能化,然后将二级抗体(Ab2)固定于其表面得到多孔结构的双信号放大探针p‑Ag@Au‑Ab2。在采用该探针进行肿瘤标志物的SPR检测,在SPR的芯片表面固定一级抗体Ab1,用牛血清蛋白封闭再结合检测抗原,并将p‑Ag@Au‑Ab2与抗原结合,再通入苯胺和H2O2的混合溶液,多孔的p‑Ag@Au‑Ab2核壳纳米粒子具有过氧化物酶模拟酶性质,可在SPR芯片表面催化H2O2氧化苯胺反应生成聚苯胺,形成二次SPR信号放大。
-
公开(公告)号:CN115784200A
公开(公告)日:2023-03-14
申请号:CN202211577352.4
申请日:2022-12-09
Applicant: 扬州大学
Abstract: 本发明涉及电池材料领域内一种氮掺杂碳包覆的二硫化钼/八硫化九钴的纳米复合材料的制备方法及其制备的正极材料,具体为:将钴源与二甲基咪唑混合,常温下磁力搅拌,离心分离固相后,洗涤,干燥,得到六面体ZIF‑67微粒;再将前述ZIF‑67微粒的醇分散液和盐酸多巴胺的醇溶液混合后,常温下磁力搅拌反应后,离心分离出固相,用乙醇洗涤,干燥,得到聚多巴胺包覆六面体ZIF‑67纳米微粒;最后将聚多巴胺包覆六面体ZIF‑67纳米微粒分散在葡萄糖水溶液中,依次加入四水合钼酸铵与硫脲,于温度180~220℃,压力2~5 Mpa下水热反应18~24 h,离心分离固相后,乙醇洗涤,干燥,高温退火,得到MoS2/Co9S8@NC复合材料,该材料制备的锂硫电池电极具有导电性能强,比容量高及容量的衰减慢等优点。
-
公开(公告)号:CN111817558A
公开(公告)日:2020-10-23
申请号:CN202010708893.0
申请日:2020-07-22
Applicant: 扬州大学
Abstract: 一种降压型直流变换器系统的复合滑模控制方法,属于直流降压变换器抗干扰控制技术领域,本发明通过ESO及时从输出电压当中采集到系统的信息,估计出影响输出电压的干扰,并利用滑模控制对匹配干扰不敏感的特点使得闭环系统拥有良好的鲁棒性;通过将滑模需要抑制的干扰转化为干扰观测的误差,大大降低了滑模切换增益的数值,并利用降阶ESO对干扰观测误差进行估计,消除抖振对于系统的影响;本发明大大降低了ESO的压力,减小了ESO带宽的选取,防止高频噪声对实际系统造成严重损伤。本发明可用于复杂环境的直流降压变换器系统,不仅可以具备很高的抗干扰能力,而且相较于其他算法来说更加容易实现,更加切合实际工程,应用前景十分广阔。
-
公开(公告)号:CN103234951B
公开(公告)日:2017-06-16
申请号:CN201310115308.6
申请日:2013-04-02
Applicant: 扬州大学
IPC: G01N21/65
Abstract: 本发明涉及一种贵金属纳米粒子包覆光子晶体编码微球制备方法。本发明通过在光子晶体编码微球的表面进行化学键修饰后,利用原位合成的方法将贵金属纳米粒子包覆在光子晶体编码微球表面,即在光子晶体编码微球表面引入贵金属纳米粒子来实现增强表面拉曼光谱效果,利用光子晶体编码微球的特征反射峰,同时检测多种待测样品,实现超高灵敏度的无标记多元生物免疫检测。本发明克服了荧光光谱所存在的易受光照、温度、存储时间等限制导致稳定性不高,生物相容性等问题,及溶剂对环境影响等缺陷。本发明灵敏度度,检测简单且快速,成本低廉,性质十分稳定,检测效率提高。
-
公开(公告)号:CN105652347A
公开(公告)日:2016-06-08
申请号:CN201610038980.3
申请日:2016-01-21
Applicant: 扬州大学
Abstract: 本发明公开了一种三维有序银纳米粒子包覆二氧化钛光子晶体微球的制备方法,属于生物医学研究、环境监测和临床检测的技术领域,本发明采用微流控装置制备三维有序的二氧化钛光子晶体微球,然后采用硝酸银水溶液经水热反应高温还原生成银纳米颗粒并将银纳米颗粒均匀地负载在二氧化钛光子晶体微球表面,生成三维有序银纳米粒子包覆二氧化钛光子晶体微球结构。制备的产物结构易调控、重复性好,其表面热点分布均一。所以本发明制备的三维有序银纳米粒子包覆二氧化钛光子晶体微球结构做为表面拉曼增强光谱基底检测时其检测灵敏度高,操作简便,且具有良好的信号重现性,进一步提高复合材料在表面拉曼增强检测领域的检测限范围。
-
公开(公告)号:CN104330553A
公开(公告)日:2015-02-04
申请号:CN201410670552.3
申请日:2014-11-20
Applicant: 扬州大学
IPC: G01N33/543 , G01N21/76
CPC classification number: G01N33/552 , G01N21/76
Abstract: 本发明公开了一种无标记化学发光免疫传感器及其免疫分析方法,一种无标记化学发光免疫传感器的免疫分析方法包括如下步骤:(1)将所述免疫传感器固定在免疫微反应器后,将带抗原样品以0.5ml/min的速度注入流通池,在线温育后形成免疫复合物;(2)用缓冲液PBST以1ml/min的速度冲洗免疫复合物,除去未反应的免疫试剂;(3)将化学发光底物溶液以0.5ml/min的速度通入免疫传感器,产生的化学发光信号由光电倍增管记录。本发明以化学发光探针和无标记的抗体共固定于具有良好生物相容性的固相界面,制得该免疫传感器,结合流动注射,构建了一种廉价、快速、方便的无标记化学发光免疫分析方法。
-
公开(公告)号:CN103146746B
公开(公告)日:2014-10-15
申请号:CN201310087162.9
申请日:2013-03-18
Applicant: 扬州大学
IPC: C12N15/82 , C12N15/113 , A01H5/00
Abstract: 本发明公开了一种生物技术领域的降低稻米表观直链淀粉含量和改善淀粉粘性、从而改良稻米食味品质的方法,此方法通过干扰水稻中可溶性淀粉合成酶SSSIIb基因表达得以实现。构建了SSSIIb基因RNA干扰载体,利用农杆菌介导的方法,获得了干扰SSSIIb基因的转基因水稻。通过PCR实验表明,目的基因已经整合到水稻基因组中。选育得到纯合系转基因水稻,该类转基因水稻胚乳中直链淀粉含量较未转化亲本日本晴有明显的降低。通过快速粘度测试仪分析表明,转基因稻米淀粉粘度降低,且糊化温度降低,稻米的食味特征明显改善。
-
-
-
-
-
-
-
-
-