-
公开(公告)号:CN106793060B
公开(公告)日:2020-09-11
申请号:CN201710132930.6
申请日:2017-03-08
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种超宽带室内定位方法,主要为了解决目前超宽带室内定位系统精度低、用户数量受限、时间同步误差大等问题。首先建立室内导航坐标系,并布置基站;其次基站按照系统信号交流机制发射定位信号,使用户所持定位设备只被动接收来自基站的测距信号;然后利用卡尔曼滤波算法的时钟偏差补偿算法,在算法上实现时钟同步;最后通过泰勒迭代算法求解出用户的坐标。本发明可实现无限定位设备的同时实现室内三维精确定位,不需要额外的硬件网络实现时钟同步,定位设备只需接收定位信号而不需发射信号,能够在视距场景和非视距场景间平稳切换。
-
公开(公告)号:CN110956946A
公开(公告)日:2020-04-03
申请号:CN201911098100.1
申请日:2019-11-12
Applicant: 哈尔滨工程大学
IPC: G10K11/168 , G10K11/172 , B32B3/26 , B32B25/14 , B32B15/20 , B32B15/06 , B32B9/00 , B32B9/04 , B32B7/02 , B32B33/00
Abstract: 本发明提供的是一种带有功能梯度板的耦合共振型水下声学覆盖层。包括外覆盖层、内覆盖层和功能梯度板,外覆盖层和内覆盖层铺设在功能梯度板的两侧,外覆盖层和内覆盖层内均有周期性空腔,外覆盖层中空腔与内覆盖层中空腔位置一一对应、形状互不相同。外覆盖层和内覆盖层铺设在功能梯度板的两侧,三者以此种方式耦合提高了声学覆盖层低频范围的吸声性能,并有效地拓宽了覆盖层的吸声频率范围。使得功能梯度板的动力学行为对覆盖层吸声特性的影响占主导作用。由于功能梯度板的共振效应,空腔与功能梯度板之间能够在低频范围能够产生耦合共振,能够对低频声波产生强吸收作用,同时,增强了在特定频率下声学覆盖层的共振效应,增强了声波的能量耗散。
-
公开(公告)号:CN110853609A
公开(公告)日:2020-02-28
申请号:CN201911098103.5
申请日:2019-11-12
Applicant: 哈尔滨工程大学
IPC: G10K11/00 , G10K11/168 , G10K11/172
Abstract: 本发明提供的是一种基于多层散射体与空腔耦合共振的水下声学覆盖层。包括覆盖层,所述覆盖层包括外覆盖层(1)和内覆盖层(3),还包括谐振效应板(2),所述谐振效应板(2)夹在外覆盖层(1)与内覆盖层(3)之间、通过谐振效应板(2)实现耦合。本发明的谐振效应板位于内、外覆盖层之间,这种耦合方式有助于改善声学覆盖层的低频吸声特性。所述声学覆盖层通过散射体分层设计、空腔与散射体的耦合以及谐振效应板等方式拓宽了声学覆盖层的吸声频段、增强了声波在声学覆盖层内的能量耗散。
-
公开(公告)号:CN109883426A
公开(公告)日:2019-06-14
申请号:CN201910177064.1
申请日:2019-03-08
Applicant: 哈尔滨工程大学
Abstract: 本发明属于多传感器融合的导航技术领域和时间配准技术领域,具体涉及基于因子图的动态分配与校正多源信息融合方法。针对现代导航系统应用环境日益复杂,传感器的工作时间不连续,量测值时有时无,甚至出现输出迟滞,传统的联邦滤波算法计算复杂,处理量测迟滞问题时精度降低。本发明使用因子图概率模型对导航系统重新建模,保证了系统出现量测类型动态变化时的导航精度同时减少计算量,提高了系统的即插即用特性,针对量测迟滞问题,使用多种传感器信息对延迟量测进行补偿提高量测信息使用率与导航精度。仿真结果表明,所提出的算法在量测值时断时续与输出迟滞的情况下具有更好的鲁棒性与容错性,同时精度也得到了提高。
-
公开(公告)号:CN109521417A
公开(公告)日:2019-03-26
申请号:CN201811496593.X
申请日:2018-12-07
Applicant: 哈尔滨工程大学
Abstract: 本发明属于毫米波雷达技术领域,具体涉及基于FMCW雷达波形的多目标检测计算方法及一种FMCW雷达波形。本发明设计的波形包括调频波LFM部分和恒频波CF部分。首先通过LFM的回波数据得到所有可能目标的两组距离和速度信息;然后通过恒频波得到目标的速度信息,并利用该速度信息对目标的两组距离和速度信息进行筛选,从而消除一部分虚假目标;最后,对筛选掉虚假目标的两组距离和速度信息进行匹配,再次去除虚假目标。通过对匹配后的目标信息进行最小二乘法处理,进一步提高距离和速度的精度。本发明设计的FMCW雷达波形结合LFM和CF的优点,简化了计算,减少了硬件存储空间。
-
公开(公告)号:CN109506647A
公开(公告)日:2019-03-22
申请号:CN201811582860.5
申请日:2018-12-24
Applicant: 哈尔滨工程大学
IPC: G01C21/16
Abstract: 本发明属于磁力计和惯性导航系统数据融合领域和智能算法辅助定位领域,具体涉及一种基于神经网络的INS和磁力计组合定位技术。针对运行中GPS失效时的定位方法,现有方法大多集中于使用智能学习算法来解决。但是目前的方法都集中于利用智能学习算法来建立INS数据和定位误差之间的关系。此类方法只能保持短暂的定位精度,随着GPS失效时间的延长,终将发散。本发明提出了一种基于磁力计的组合定位方案,从理论上分析了磁力计与位置之间的关系,在GPS有效时利用智能学习算法建立磁力计与位置之间的模型。随后当GPS失效时,利用磁力计和训练完成的智能算法预测位置。由于预测的位置可能是离散且带噪声的,所以利用INS组合得到连续且精确的位置。
-
公开(公告)号:CN109282804A
公开(公告)日:2019-01-29
申请号:CN201811015886.1
申请日:2018-09-01
Applicant: 哈尔滨工程大学
IPC: G01C19/64
Abstract: 本发明属于惯性寻北定向测量领域,具体涉及一种单轴光纤陀螺寻北算法。具体包括如下步骤:采集四个位置的陀螺、加速度计数据;然后解算出粗寻北值;再解算出精寻北值。相应的寻北装置包括采集模块、控制模块、解算模块和通信模块,加速度计信号由A/D采样模块进行信号采集,而光纤陀螺输出则直接通过串口采集,采集的加速度计信号与光纤陀螺信号被送给控制模块,经过控制模块的初步处理再传送给解算模块,最终由解算模块运用寻北算法解算出寻北结果并传送给控制模块,控制模块再通过串口通信模块将结果发出,其他设备可通过串口通信模块与寻北设备进行通信,本发明精度更高,稳定行更好,应用前景广阔。
-
公开(公告)号:CN108712356A
公开(公告)日:2018-10-26
申请号:CN201810248785.2
申请日:2018-03-25
Applicant: 哈尔滨工程大学
IPC: H04L27/26 , H04B10/61 , H04B7/0456
CPC classification number: H04L27/2691 , H04B7/0456 , H04B10/613 , H04B10/6161 , H04L27/2695
Abstract: 本发明提供了一种基于离散菲涅耳变换扩展OFDM(DFnT‑S‑OFDM)调制的相干光纤通信系统,属于光纤通讯领域,目的在于解决在传统OFDM中存在的频率衰落问题和在离散傅里叶变换扩展OFDM(DFT‑S‑OFDM)中存在的码间串扰问题。DFnT‑S‑OFDM系统的核心包括发射机中用于产生DFnT‑S‑OFDM的信号编码模块和接收机中的逆DFnT模块和信道均衡模块。本发明通过DFnT预编码,将数据信息同时分布在时间域和频谱域,相对于传统OFDM调制格式具有更强的抗频率衰落性能,相对于DFT‑S‑OFDM具有更强的抗光纤色散和无线多径效应的能力,并能够有效降低编码器的复杂度。
-
公开(公告)号:CN107734588A
公开(公告)日:2018-02-23
申请号:CN201710837781.3
申请日:2017-09-18
Applicant: 哈尔滨工程大学
CPC classification number: H04W40/02 , H04L9/0861 , H04L9/3249 , H04L9/3297 , H04L45/70 , H04L63/1416 , H04W40/12
Abstract: 本发明公开了一种基于网络编码安全高效的协作中继选择方法,属于无线传感器网络协同通信领域。所述方法包括:(1)协作中继通信系统建模(2)融合时间戳的RSA同态签名方案对原始数据包进行处理;(3)协作中继节点引入污染攻击和重放攻击,构造节点安全度;(4)基于接受信噪比和信道增益的双向中继选择算法。(5)选定协作中继节点。主要解决了应用网络编码原理本身的特殊性导致对信息的扩散性较强,攻击者在协作中继只要注入很小的恶意信息或对相关信息稍做修改就可能影响一定范围的甚至是整个的网络的问题。本申请发明的方法能够在保证中继节点安全的基础上,可显著提高目的端的可达和速率和有效降低中断概率。
-
公开(公告)号:CN106793060A
公开(公告)日:2017-05-31
申请号:CN201710132930.6
申请日:2017-03-08
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种超宽带室内定位方法,主要为了解决目前超宽带室内定位系统精度低、用户数量受限、时间同步误差大等问题。首先建立室内导航坐标系,并布置基站;其次基站按照系统信号交流机制发射定位信号,使用户所持定位设备只被动接收来自基站的测距信号;然后利用卡尔曼滤波算法的时钟偏差补偿算法,在算法上实现时钟同步;最后通过泰勒迭代算法求解出用户的坐标。本发明可实现无限定位设备的同时实现室内三维精确定位,不需要额外的硬件网络实现时钟同步,定位设备只需接收定位信号而不需发射信号,能够在视距场景和非视距场景间平稳切换。
-
-
-
-
-
-
-
-
-