一种稀土及其氧化物改进氧化石墨的制备方法

    公开(公告)号:CN103359726B

    公开(公告)日:2015-03-04

    申请号:CN201310308501.1

    申请日:2013-07-22

    Abstract: 一种稀土及其氧化物改进氧化石墨的制备方法,涉及氧化石墨的制备方法。本发明是要解决现有方法制备的氧化石墨存在的插层不完全,氧化效果不理想的技术问题。制备方法为:一、将浓硫酸,石墨,稀土及其氧化物,高锰酸钾和硝酸钠混合均匀,加入到反应罐中,依次在低温,中温,高温三个阶段反应,然后加入双氧水和去离子水,得到含有酸性的氧化石墨;二、将步骤一得到的含有酸性的氧化石墨通过盐酸洗涤,真空烘干,即得到氧化石墨。本发明制备的氧化石墨加入稀土及其氧化物后的层片之间的距离更大,插层效果更好,更有利于石墨的氧化,使得在同等条件下石墨片层上悬挂更多基团,氧化更加充分。本发明应用于氧化石墨的制备领域。

    高导热氮化铝基复相陶瓷的制备方法

    公开(公告)号:CN103626497A

    公开(公告)日:2014-03-12

    申请号:CN201310610679.1

    申请日:2013-11-27

    Abstract: 高导热氮化铝基复相陶瓷的制备方法,涉及一种高导热陶瓷材料的制备方法。所述方法为:称取定量聚碳硅烷置于球磨罐中,加入适量的二甲苯,得到聚碳硅烷-二甲苯溶液;称取经表面改性的氮化铝粉体置于球磨罐中球磨混合,完成混合浆料制备;将混合浆料进行干燥,获得陶瓷预制体;将陶瓷预制体置于管式炉内在湿惰性气体保护下完成热处理。本发明所制备的AlN-莫来石复相陶瓷材料可以拥有AlN和莫来石相的优点,密度低、介电常数低,热导率可以达到5~170W/m·K,热膨胀系数小,可很好地与半导体材料相匹配,烧结制备温度低,并且所制备的陶瓷材料致密度高、成本小,可以满足陶瓷封装材料的需求,适合产业化生产。

    一种硼碳氮多孔陶瓷的制备方法

    公开(公告)号:CN103396125A

    公开(公告)日:2013-11-20

    申请号:CN201310331011.3

    申请日:2013-08-01

    Abstract: 本发明涉及一种硼碳氮多孔陶瓷的制备方法,其以硼碳氮(BCN)有机先驱体为粘结剂,静电纺丝法制备的纳米聚丙烯腈纤维为骨架,制备成硼碳氮(BCN)有机先驱体-聚丙烯腈纳米纤维复合体。该复合体在气氛烧结炉中,以3oC/min升至1400oC并保温1.5h。炉内采用N2气氛保护,烧结制成。本发明制备的BCN多孔陶瓷孔隙均匀、工艺简单、成本低廉。具有优良的抗热震性、抗高温氧化性和高的比强度。适用于制作航天器耐高温部件、隔热部件。

    一种氮化硼微米实心球制备方法

    公开(公告)号:CN103395752A

    公开(公告)日:2013-11-20

    申请号:CN201310344245.1

    申请日:2013-08-09

    Abstract: 本发明涉及一种氮化硼微米实心球制备方法,其以三氯硼吖嗪为基础原料,在三氯硼吖嗪质量百分含量为65%-80%的甲苯溶液中加热至140oC,反应3~15h,制得聚合三氯硼吖嗪先驱体。在1400oC,0.3-3MPa氮气气氛下,聚合三氯硼吖嗪裂解获得纯度>99%的氮化硼微米实心球。产物为白色粉末状,有滑腻感,测试表征结果为六方BN。本发明合成的BN微球纯度高,制备工艺简单,不需要任何添加剂,制备的BN微球分散度小。

    一种具有荧光效应的Eu-Sialon纳米带及其制备方法

    公开(公告)号:CN102942931A

    公开(公告)日:2013-02-27

    申请号:CN201210487456.6

    申请日:2012-11-27

    Abstract: 本发明涉及一种具有荧光效应的Eu-Sialon纳米带,其是将Si-Al-O-N-C粉末与Eu化物粉(铕化物粉)混合,Eu化物占混合粉料的体积百分比为0.1-2%;混合粉料置于石墨坩埚中,在高压氮气环境下,通过化学气相沉积法生长,在坩埚中得到Eu掺杂的Eu-Sialon纳米带。所得Eu-Sialon纳米带是新一代荧光转换材料,其具有极高的磷光密度和较好的高温量子效率,由Eu-Sialon纳米带组成的双色或者多色LED,具有高流明效率、高色稳定性、色温可调性、高显色指数等优良的性能。

    一种Sialon双晶纳米带及其制备方法

    公开(公告)号:CN102924088A

    公开(公告)日:2013-02-13

    申请号:CN201210487457.0

    申请日:2012-11-27

    Abstract: 本发明涉及一种Sialon双晶纳米带及其制备方法,其是将Si-Al-O-N-C粉末与碳粉压制成圆环形预制块,在高压氮气环境下,通过化学气相沉积法生长,在圆环形预制块周围形成Sialon双晶纳米带,其厚度为10-800nm,宽度为0.1-10μm,长1-15mm。所得Sialon双晶纳米带具有其他纳米带不具备的独特性能和应用前景,比如优异的介电性能、导热性和机械强度。由于其在生长方向上具有独特的双晶结构,Sialon双晶纳米带可用于光转换,以及用于构建纳米光探测器件等。

    一种氮化硅纳米无纺布的制备方法

    公开(公告)号:CN101838886B

    公开(公告)日:2012-02-29

    申请号:CN201010204481.X

    申请日:2010-06-21

    Abstract: 一种氮化硅纳米无纺布的制备方法,它涉及氮化硅纳米材料的制备方法。本发明解决现有氮化硅纳米纤维在实际应用中易团聚、分散不均匀、难以形成固定形状的问题。无纺布由单晶α-Si3N4纳米纤维自组装交叉叠加形成,厚度为0.5~20mm,其中氮化硅纳米纤维为单晶α-Si3N4、长度分布在0.1~60mm。方法:凝胶溶胶法制得非晶态Si-B-O-C复合粉体,然后将复合粉体放置于坩埚底部,盖上坩埚盖,并置于气氛烧结炉,在氮气氛中热处理即可。氮化硅纳米无纺布克服了现有氮化硅纳米纤维应用中分散不均匀、容易团聚等问题,有优良的均匀性,纯度高,物理化学稳定性高,有广阔的应用前景。制备工艺简单、节能环保、易控制、成本低及产率高。

    SiOCN陶瓷的制备方法
    78.
    发明授权

    公开(公告)号:CN101550012B

    公开(公告)日:2011-11-23

    申请号:CN200910072021.3

    申请日:2009-05-13

    Abstract: SiOCN陶瓷的制备方法,它属于陶瓷制备领域。本发明解决了现有SiOCN材料的制备方法存在的成分不易控、制备工艺复杂及成本高问题。本发明方法:一、含硅氢键的化合物与烯丙胺混合,再加入铂催化剂混合均匀得到混合物;二、制备SiOCN先驱体;三、经过裂解即制备得到SiOCN陶瓷。本发明的制备方法成本低,制备得到的SiOCN陶瓷高温性能好,可在1400℃以上的条件下使用,应用范围广。

    一种中空碳纤维的制备方法

    公开(公告)号:CN101805943B

    公开(公告)日:2011-11-16

    申请号:CN201010152182.6

    申请日:2010-04-21

    Abstract: 一种中空碳纤维的制备方法,它涉及碳纤维的制备方法。本发明解决了现有的制备中空碳纤维的纺丝法制备过程温度高、弹性模量低和化学气相生长法制备的中空碳纤维中含有杂质、难以合成管径为几百纳米至几微米的中空纤维的问题。本方法:一、将碳源材料放入石墨坩埚中,并将石墨坩埚置于气氛烧结炉中,然后抽真空至0.1~1Pa;二、向炉内充入高纯氮气或氩气使压强达到0.2~2.5MPa;三、以5~30℃/min的速度使温度升至900~1500℃后保温1~4h,然后随炉冷却到室温,即得中空碳纤维。本方法的反应温度低,不使用催化剂,合成的中空碳纤维石墨化程度高,无杂质,纯度为100%。可以用作电容器、储氢和复合材料。

    一种氮化硅纳米线和纳米带的制备方法

    公开(公告)号:CN101224876B

    公开(公告)日:2011-07-06

    申请号:CN200810063927.4

    申请日:2008-01-28

    Abstract: 一种氮化硅纳米线和纳米带的制备方法,它涉及一种氮化硅纳米线和纳米带的制备方法。它解决了现有技术中氮化硅纳米线和纳米带的制备工艺复杂、成本较高、污染环境的问题。制备方法:将工业硅粉装入坩埚后,在氮气氛下烧结,随炉冷却至室温,得氮化硅纳米线和氮化硅纳米带。本发明一种氮化硅纳米线和纳米带的制备方法,工艺简单、成本较低、不产生污染环境的有害气体。

Patent Agency Ranking