一种基于深度相机的速度与力量反馈系统

    公开(公告)号:CN115937895A

    公开(公告)日:2023-04-07

    申请号:CN202211414614.5

    申请日:2022-11-11

    Applicant: 南通大学

    Abstract: 本发明涉及电子信息技术领域,尤其涉及一种基于深度相机的速度与力量反馈系统,包括图像采集模块、人体捕捉模块、运动监测模块和速度与力量计算模块;所述图像采集模块运用内置视觉传感器分别对运动员和运动员外部环境监测,图像采集模块可同时完成彩色图像和深度图像的采集;所述图像采集模块由两个深度相机组成,按照十字型将两个深度相机进行横竖安装固定;所述人体捕捉模块用于高效定位人体16个关键点,以Exc‑Pose算法为核心,具体包括轻量化“E”型结构编码层和基于回归模型监督学习方法的解码层。本发明通过合理的结构搭配相关算法无接触捕获运动员在体能训练过程中产生的姿态、速度、力量、功率等核心技术指标,并将其数字化,指导科学化训练。

    一种基于智能声信息识别的焊后焊缝冲击质量判别方法

    公开(公告)号:CN110824006B

    公开(公告)日:2021-12-28

    申请号:CN201911088740.4

    申请日:2019-11-08

    Applicant: 南通大学

    Abstract: 本发明属于机械控制领域,公开了一种基于智能声信息识别的焊后焊缝冲击质量判别方法,包括:控制超声冲击枪枪头以不同的处理压力、处理速度、处理角度和冲击频率对焊后焊缝进行冲击处理,获取冲击处理过程中的声信号,计算声信号的特征值,构建包含多种应力处理情况的声信号样本集;根据焊后焊缝的冲击处理质量测定结果对声信号样本集进行标注;建立多权值神经网络模型,并利用经过标注的声信号样本集对多权值神经网络模型进行训练;获取待判别焊后焊缝冲击处理声信号的特征值,并将特征值输入经过训练的多权值神经网络,输出待判别焊后焊缝冲击处理质量的判断结果。该方法识别准确、监测成本低且不用对焊件造成破坏。

    基于机器视觉与深度学习的类圆对象识别计数检测算法

    公开(公告)号:CN111523535A

    公开(公告)日:2020-08-11

    申请号:CN202010252859.7

    申请日:2020-04-01

    Applicant: 南通大学

    Abstract: 本发明公开了基于机器视觉与深度学习的类圆对象识别计数检测算法,包括采用工业相机对所要统计的滤棒对象的垂直截面图像进行采集;从获得的图像中利用自适应阈值二值化和FindContours()函数获得滤棒对象的感兴趣区域;将获得的感兴趣区域切成a个A*A像素子图;将获得的a个A*A像素子图放入改进的SAA‑unet模型中进行训练;将训练完的a个A*A像素子图进行复原,重新获得感兴趣区域;再将重新获得的感兴趣区域进行滤棒对象的统计计数,本发明加入了SAA‑unet数学理论、结构构造原理来提高检测的效率的计数检测方法,更为高效与智能,解决了人工计数高强度作业,工作效率低,误差大等容易出错的问题,算法准确率高达98.7%。

    一种基于改进的Openpose模型和面部微表情的考试行为检测方法

    公开(公告)号:CN111523445A

    公开(公告)日:2020-08-11

    申请号:CN202010317535.7

    申请日:2020-04-21

    Applicant: 南通大学

    Abstract: 本发明公开了一种基于改进的Openpose模型和面部微表情的考试行为检测方法,在课桌前布置摄像机,实时检测学生考试行为。通过人工智能模型识别面部信息、上半身骨骼信息,以关键点能否被识别到以及关键点之间的距离为主要判断条件,以微表情的变化为辅助判断条件。若某学生持续一段时间未满足条件,则判定其存在考试行为异常。此外,通过一节课的视频流,找出学生行为异常可能发生阶段,并对该阶段进行分析,实现教学的创新和改革。靠机器视觉识别减少干扰因素,简化设备,本发明通过残差网络,权值修剪等方法进一步优化网络模型。相较于传统方式,本发明实现自助式的考试行为检测和反馈,测试效率高,准确性可达95%,可以应用于一般考试检测。

    基于改进的Openpose模型和面部微表情的课堂行为检测的方法

    公开(公告)号:CN111523444A

    公开(公告)日:2020-08-11

    申请号:CN202010317534.2

    申请日:2020-04-21

    Applicant: 南通大学

    Abstract: 本发明公开了基于改进的Openpose模型和面部微表情的课堂行为检测的方法,在课桌前的布置摄像机,实时检测学生课堂行为。通过人工智能模型识别面部信息、上半身骨骼信息,以关键点能否被识别到以及关键点之间的距离为主要判断条件,以微表情的变化为辅助判断条件。若某学生持续一段时间未满足条件,则判定其存在考试行为异常。此外,通过一节课的视频流,找出学生行为异常可能发生阶段,并对该阶段进行分析,实现教学的创新和改革。靠机器视觉识别减少干扰因素,简化设备,同时本发明还提供对应的数据分析处理系统。本发明通过残差网络,权值修剪等方法进一步优化网络模型。本发明实现自助式的课堂行为检测和反馈,测试效率高,准确性可达95%。

    基于深度学习的病理图像多染色分离方法

    公开(公告)号:CN110110634A

    公开(公告)日:2019-08-09

    申请号:CN201910347578.7

    申请日:2019-04-28

    Applicant: 南通大学

    Abstract: 本发明公开了一种基于深度学习的病理图像多染色分离方法,包括以下步骤:(1)对病理染色图像进行光密度变换,得到原始病理染色图像的光密度矩阵;(2)将步骤(1)得到的光密度矩阵构建ResU-Net模型;(3)对步骤(2)得到的ResU-Net模型进行训练;(4)通过经步骤(3)训练后的ResU-Net模型进行图像染色分离。该方法能够对原图像进行像素级分析,更好的分离图像中同一类组织,从而提高染色分离性能。

Patent Agency Ranking