一种磁场下的凝固取向装置

    公开(公告)号:CN106735104B

    公开(公告)日:2018-10-23

    申请号:CN201611101994.1

    申请日:2016-12-05

    Applicant: 东北大学

    Abstract: 一种磁场下的凝固取向装置,属于电磁铸造技术领域,所述装置包括圆柱形的冷却铜模,冷却铜模与壳体通过第二法兰连接,壳体通过第一法兰与密封盖连接,第一法兰设充气孔,壳体内固定有坩埚,坩埚与壳体间有间隙,间隙与第一法兰连通,坩埚外壁缠绕感应加热线圈,坩埚底部开有浇铸口,坩埚内设浇铸控制杆,浇铸控制杆下移时可浇封堵铸口,壳体底部开有通孔和通气孔,通气孔连通间隙与第二法兰,第二法兰设排气孔,冷却铜模外设稳恒磁场发生器,冷却铜模底板上设有与其内壁同心的圆环形凹槽,凹槽内装石英管,石英管顶部设圆锥形分流器。本发明所述装置结构简单,使用方便,可在一次实验中实现对多个不同凝固组织生长方向与磁场方向夹角关系的研究。

    一种提高块体非晶合金Fe-M-B软磁性能的方法

    公开(公告)号:CN102424937B

    公开(公告)日:2013-04-03

    申请号:CN201110419773.X

    申请日:2011-12-15

    Applicant: 东北大学

    Abstract: 本发明属于功能材料领域,特别涉及一种提高块体非晶合金Fe-M-B软磁性能的方法。在真空条件下,将非晶合金Fe-M-B加热到玻璃转变温度(Tg-20)℃至晶化开始温度(Tx+20)℃区间,保温10-60分钟,在加热及保温过程同时施加3-20T的磁场,保温结束后空冷至室温,撤销磁场,即可得到饱和磁感应强度≤145.7emu/g,矫顽力≤30A/m的Fe-M-B块状非晶合金。本发明方法在不降低合金形成尺寸的前提条件下,有效提高了Fe-M-B合金软磁性能,有利于发展性能优异的非晶纳米晶合金。

    一种提高块体非晶合金Fe-M-B软磁性能的方法

    公开(公告)号:CN102424937A

    公开(公告)日:2012-04-25

    申请号:CN201110419773.X

    申请日:2011-12-15

    Applicant: 东北大学

    Abstract: 本发明属于功能材料领域,特别涉及一种提高块体非晶合金Fe-M-B软磁性能的方法。在真空条件下,将非晶合金Fe-M-B加热到玻璃转变温度(Tg-20)℃至晶化开始温度(Tx+20)℃区间,保温10-60分钟,在加热及保温过程同时施加3-20T的磁场,保温结束后空冷至室温,撤销磁场,即可得到饱和磁感应强度≤145.7emu/g,矫顽力≤30A/m的Fe-M-B块状非晶合金。本发明方法在不降低合金形成尺寸的前提条件下,有效提高了Fe-M-B合金软磁性能,有利于发展性能优异的非晶纳米晶合金。

    一种磁场作用下Cu-Fe合金的制备方法

    公开(公告)号:CN102031399B

    公开(公告)日:2012-02-29

    申请号:CN201010539063.6

    申请日:2010-11-11

    Applicant: 东北大学

    Abstract: 本发明涉及一种合金的制备方法,特别涉及一种磁场作用下Cu-Fe合金的制备方法。包括以下工艺步骤:(1) 制备铸态Cu-Fe母合金;(2)0.1~20 T稳恒磁场作用下Cu-Fe合金的凝固;(3)稳恒磁场作用下合金的均匀化处理;(4)650-750℃热锻;(5)拉拔;(6)稳恒磁场下合金的退火处理;(7)再拉拔;(8)重复形变磁场热处理;(9)梯度磁场作用下合金的退火处理。本发明充分利用稳恒磁场的强磁化能、强取向排列作用,结合梯度磁场的强磁化力作用等特性,有效优化Cu-Fe合金的导电率与抗拉强度的匹配关系,获得导电率为56~78%IACS、抗拉强度为750~1450MPa的Cu-Fe合金线。

    一种高强度高导电率Cu-Ag-Sn合金及其制备方法

    公开(公告)号:CN116162820B

    公开(公告)日:2025-04-08

    申请号:CN202310068943.7

    申请日:2023-02-06

    Applicant: 东北大学

    Abstract: 本发明公开了一种具有高强度高导电率的Cu‑Ag‑Sn合金,合金成分按质量百分比为Ag3~9%,Sn0.1~1%,Y0.01~0.02%,余量为Cu。制备方法包括:以Ag‑Sn中间合金、Ag‑Y中间合金方式添加微量Sn元素与Y元素,其余Cu与Ag以纯金属配料;通过真空感应熔炼、浇铸方式制备合金铸锭;通过固溶热处理使Sn与Ag元素饱和固溶于Cu基体中,再通过时效热处理使Sn与Ag元素析出为纳米相。该方法可制备具有较大比例的连续性Ag纳米析出相且组织均匀的Cu‑Ag‑Sn合金。该合金硬度可达80~130HV,强度可达180~250MPa,导电性可达70~85%IACS,力学与电学性能优异,制备工艺简单,工业化前景良好。

    一种具有颗粒增强相的Al-Bi-Sn难混溶合金及其制备方法

    公开(公告)号:CN118127383A

    公开(公告)日:2024-06-04

    申请号:CN202410243699.8

    申请日:2024-03-04

    Applicant: 东北大学

    Abstract: 本发明涉及一种具有颗粒增强相的Al‑Bi‑Sn难混溶合金及其制备方法,属于有色金属合金技术领域。所述合金按质量百分比,由如下组分构成:Bi 3~20%,Sn 5~15%,Ti 0.04~0.4%,B 0.02~0.2%,余量为Al。该合金的制备方法,结合喷吹熔剂生成均匀弥散分布的TiB2颗粒,以及搅拌的作用,制备富Bi‑Sn相细小且弥散分布的Al‑Bi‑Sn难混溶合金。本发明通过喷吹熔剂和化学反应在Al‑Bi难混溶合金熔体中生成TiB2颗粒,在凝固过程中促进了富Bi‑Sn液滴形核,细化了软质的富Bi‑Sn相尺寸,同时提高了合金Al基体的硬度,增强了合金的自润滑耐磨性能。

    一种控制连铸结晶器内钢液流动的立式电磁制动装置

    公开(公告)号:CN106041009B

    公开(公告)日:2017-10-31

    申请号:CN201610580291.5

    申请日:2016-07-22

    Applicant: 东北大学

    CPC classification number: B22D11/11 B22D11/16

    Abstract: 一种控制连铸结晶器内钢液流动的立式电磁制动装置,包括水平磁极、励磁线圈、立式磁极及磁轭;立式磁极设有两对,水平磁极设有一对或两对;水平磁极为一对时,其位于侵入式水口下方且沿结晶器宽面布置;水平磁极为两对时,分别记为上、下部水平磁极,下部水平磁极位于侵入式水口下方且沿结晶器宽面布置,上部水平磁极位于结晶器内钢液表面附近且沿结晶器宽面布置;两对立式磁极分别布置于结晶器两侧面区域附近且与一对或两对水平磁极相交汇;励磁线圈及磁轭均与水平磁极配装,通过励磁线圈施加电流,在水平磁极与立式磁极之间产生稳态磁场,结晶器内流动的钢液通过稳态磁场时受到与钢液流动方向相反的电磁力,通过电磁力控制结晶器内钢液的流动。

    一种高强度高导电率Cu‑Ag‑Fe合金的制备方法

    公开(公告)号:CN105839038B

    公开(公告)日:2017-06-30

    申请号:CN201610218372.0

    申请日:2016-04-08

    Applicant: 东北大学

    Abstract: 一种高强度高导电率Cu‑Ag‑Fe合金的制备方法,属于有色金属合金技术领域。其制备方法包括以下步骤:将Cu‑Ag‑Fe合金原料按配比熔炼,在1000~1300℃浇注制得铸态Cu‑Ag‑Fe母合金;在0.1~1T交变磁场作用下将Cu‑Ag‑Fe合金凝固;在0.1~30T稳恒磁场作用下对合金进行均匀化处理;然后进行预变形、中间退火热处理、再变形,最后在0.1~30T稳恒磁场下最终退火热处理,得到高强度高导电率Cu‑Ag‑Fe合金线材/板材,其导电率为55~88%IACS,抗拉强度为750~1760MPa。本方法利用电磁场、形变配合热处理制备Cu‑Ag‑Fe合金,不仅保留了Cu‑Ag合金优良的导电性,并且提高了合金强度,降低了合金原料成本。

    结合磁场热处理制备纳米级多层金属基复合材料的方法

    公开(公告)号:CN105478520B

    公开(公告)日:2017-05-10

    申请号:CN201510938248.7

    申请日:2015-12-15

    Applicant: 东北大学

    Abstract: 一种结合磁场热处理制备纳米级多层金属基复合材料的方法。包括如下步骤:(1)基片的预处理:选取基片后,退火,切割并叠放;(2)压制成板:将叠放好的基片放在不锈钢套筒中,进行压制;(3)轧制;(4)热处理:取出不锈钢内部的多层金属基复合材料,根据多层金属基复合材料的铁磁性元素层的厚度,判断热处理的工艺是否为热处理和稳恒磁场相结合;(5)根据多层金属基复合材料的铁磁性元素层的厚度判断工艺的终止条件。本发明的制备方法,利用强磁场抑制纳米相的粗化,增强纳米相的织构取向;制备出的纳米级多层金属基复合材料,纳米层的平均厚度小于20nm,与现有技术相比,硬度提高了10~35%,电阻也提高了10~35%。

Patent Agency Ranking