一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法

    公开(公告)号:CN116986895A

    公开(公告)日:2023-11-03

    申请号:CN202311241879.4

    申请日:2023-09-25

    Abstract: 本发明涉及压电陶瓷技术领域,具体公开了一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法,所述无铅压电陶瓷的化学通式为:Ba0.94Sr0.06Ti0.92Sn0.08O3‑0.08xS0.08x,其中,0.2≤x≤1。本发明通过利用SnS部分取代SnO2作为原料,实现S4‑取代O2‑,进而实现阴离子掺杂取代。相较于O2‑,S4‑的化学价更高,有利于建立非等价阴离子取代诱导的缺陷结构,并增大缺陷对的自发极化强度,从而增强极化强度,进而提升无铅压电陶瓷的压电和介电性能,压电常数d33最高可达1010~1700pC/N,室温相对介电常数εr可达6120~8830;远高于钛酸钡陶瓷的压电性能。

    一种无铅压电陶瓷及制备方法

    公开(公告)号:CN116553927B

    公开(公告)日:2023-09-05

    申请号:CN202310850112.5

    申请日:2023-07-12

    Abstract: 本发明涉及压电陶瓷技术领域,具体公开了一种无铅压电陶瓷及制备方法,压电陶瓷的化学通式为:0.95K0.48Na0.52Nb0.95Sb0.05O3‑0.035(Bi0.5Ag0.5)ZrO3‑0.015BaZrO3‑xF2x‑0.004Fe2O3,其中,x为用BaF2替代原料中的BaCO3的摩尔百分数,x=20~100%。本发明采用BaF2取代BaCO3作为原料,实现氟离子对氧离子的取代,即阴离子掺杂,使制备的压电陶瓷材料的相变处介电峰锐化,相对介电常数为2303~3001,压电系数为410~480 pC/N,制备过程采用Fe2O3作为助烧剂,能够有效地降低材料的烧结温度,有助于提升陶瓷的致密性,获得高质量的陶瓷。

    太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法

    公开(公告)号:CN115793295B

    公开(公告)日:2023-06-20

    申请号:CN202211493684.4

    申请日:2022-11-25

    Abstract: 本发明公开了一种太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法,包括棱镜和和置于所述棱镜下方的石墨烯‑金属异质结,所述石墨烯‑金属异质结由石墨烯层与金属层周期性交替叠加得到,所述石墨烯‑金属异质结的衬底材料为SiO2;线偏振高斯光束由棱镜耦合后,以θ角入射石墨烯‑金属异质结,并在外加磁场的作用下,在石墨烯‑金属异质结的界面反射发生光自旋霍尔效应,将光束分裂成左旋圆偏振光和右旋圆偏振光。本发明采用上述太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法,可大大增强左旋圆偏振光和右旋圆偏振光的不对称分裂,从而在太赫兹磁场下,为增强光自旋霍尔效应横向位移和有效调控提供可能性。

    太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法

    公开(公告)号:CN115793295A

    公开(公告)日:2023-03-14

    申请号:CN202211493684.4

    申请日:2022-11-25

    Abstract: 本发明公开了一种太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法,包括棱镜和和置于所述棱镜下方的石墨烯‑金属异质结,所述石墨烯‑金属异质结由石墨烯层与金属层周期性交替叠加得到,所述石墨烯‑金属异质结的衬底材料为SiO2;线偏振高斯光束由棱镜耦合后,以θ角入射石墨烯‑金属异质结,并在外加磁场的作用下,在石墨烯‑金属异质结的界面反射发生光自旋霍尔效应,将光束分裂成左旋圆偏振光和右旋圆偏振光。本发明采用上述太赫兹频率下的磁光光自旋霍尔效应实验装置及其方法,可大大增强左旋圆偏振光和右旋圆偏振光的不对称分裂,从而在太赫兹磁场下,为增强光自旋霍尔效应横向位移和有效调控提供可能性。

    一种电流驱动光场调控装置及其使用方法

    公开(公告)号:CN115295718A

    公开(公告)日:2022-11-04

    申请号:CN202210979827.6

    申请日:2022-08-16

    Abstract: 本发明公开了一种电流驱动光场调控装置,包括磁绝缘体异质结薄膜以及与磁绝缘体异质结薄膜的电极区域接触的重金属电极,重金属电极与电流注入模块的输出端电性连接,电流注入模块的输入端与用于输出正负脉冲的脉冲电源电性连接。本发明采用上述结构的电流驱动光场调控装置,无需外部强磁场的供给,因此可以大大减小体积,利于模块化的集成;并且调控驱动能量来自于外加的弱脉冲电流,主要磁调控反应是发生在样品内部,因此不存在磁场外泄造成干扰的问题;最后由于自旋轨道转矩的响应速度非常快(小于20ms),且由于脉冲电流方向的高可控性,因此光场调控速度与施加电流脉冲的速度几乎一致。

    基于受抑全反射光自旋霍尔效应手性分子鉴别系统及方法

    公开(公告)号:CN114509410A

    公开(公告)日:2022-05-17

    申请号:CN202110934608.1

    申请日:2021-08-16

    Abstract: 本发明公开了一种基于受抑全反射光自旋霍尔效应手性分子鉴别系统,依次包括前置选择光路、增强芯片结构、后置选择光路以及电耦合元件CCD,通过该光路增强光自旋霍尔效应,使CCD可以捕捉到光斑,并能够读取出自旋横移值,同时提出一种基于受抑全反射光自旋霍尔效应手性分子鉴别方法,利用鉴别系统读取到的光强数据中的光自旋横移值,并根据光自旋横移值求解旋光角度,然后计算的旋光角度求解手性分子溶液的比旋度,并根据所计算的手性分子溶液的比旋度得到对应的分子材料的类别,通过本方法适用于所有手性分子溶液的鉴别。

    一种多通道重金属检测装置及检测方法

    公开(公告)号:CN113834789A

    公开(公告)日:2021-12-24

    申请号:CN202110981179.3

    申请日:2021-08-25

    Abstract: 本发明公开了一种多通道重金属检测装置及检测方法,其中多通道重金属检测装置包括半导体激光器、比色池和检测终端;所述检测终端包括电源、光电转换模块、通道选择器、温度传感器、AD转换器、DA转换器、单片机、按键控制模块、显示器和PC端连接模块;其中光电转换模块包括对数放大器和光电二极管。本发明设计简化传感采集光路,从而降低成本,减小系统体积,能够实现便携功能;通过多通道与神经网络结合,降低检测误差,降低检测限,增加稳定性,克服了非线性效应对检测的影响,提高检测准确率;利用电压差标定吸光度,减少系统运算量;检测终端可实时监测电压信号,以精确获得光照强度,提高检测分辨率。

    一种溶液浓度测量装置、方法及溶液传感灵敏度测量方法

    公开(公告)号:CN110672525A

    公开(公告)日:2020-01-10

    申请号:CN201911009370.0

    申请日:2019-10-23

    Abstract: 本发明公开了一种溶液浓度测量装置、方法及溶液传感灵敏度测量方法。激光器用于生成不同波长的激光光源,激光器产生的激光经半波片、第一透镜、第一偏振镜进入携带微流体芯片的棱镜,以反射出A光束和B光束;A光束和B光束经光阑、第二偏振镜、第二透镜进入CCD图像传感器;第一透镜为聚焦透镜;棱镜斜面依次贴合设置有样品、微流体芯片;永磁体设置在棱镜下方和/或上方,磁场方向与棱镜竖轴平行。本发明的有益效果为通过在棱镜和第二偏振镜之间增加光阑,提高了光斑的成像质量;通过设置永磁体,增加与棱镜竖轴平行的磁场方向,不仅可以消除背景噪音,且提高了测量的精度;测量出来的磁光光自旋霍尔效应的值相比于光自旋霍尔效应的值更大、更准确。

    一种矢量光束合成设备的监测装置

    公开(公告)号:CN212722568U

    公开(公告)日:2021-03-16

    申请号:CN202021475428.9

    申请日:2020-07-23

    Abstract: 本实用新型公开了一种矢量光束合成设备的监测装置,涉及光学设备技术领域。本实用新型包括下壳体和上壳体,上壳体与下壳体上表面固定连接,下壳体下表面固定连接有若干支脚,上壳体内设置有安装座,安装座与下壳体上表面固定连接,安装座卡装有电机,电机一端固定连接有第一齿轮,第一齿轮周侧面啮合有第二齿轮;本实用新型通过使用第一带轮、第二带轮、第一齿轮和第二齿轮,通过齿轮传动和带传动调节波片的进光角度,让工作人员能够根据自己的需求调节波片的角度,便于监测到不同情况下的矢量光束;本实用新型通过使用显示屏,通过将监测到的矢量光束的数据呈现在显示屏上,便于工作人员观察。

    一种热光效应光波导检测装置

    公开(公告)号:CN207923701U

    公开(公告)日:2018-09-28

    申请号:CN201820183314.3

    申请日:2018-02-02

    Abstract: 本实用新型公开了一种基于热光效应光波导检测装置,包括:第一光电探测器、具有热光效应的光波导器件、第二光电探测器和第一放大器。可以采用现存半导体工艺将光波导、加热装置、温度检测装置、放大器等全部集成于单个晶片上。第一放大器输出的电信号调整光波导器件的温度,基于热光效应调整光波导器件的输出光信号,从而获得环路稳定。测量第一放大器输出的电信号或者光波导器件的温度即可快速准确地获得待测物品的信息。(ESM)同样的发明创造已同日申请发明专利

Patent Agency Ranking