建立表征提取模型、表征提取、类型识别的方法和装置

    公开(公告)号:CN113988225A

    公开(公告)日:2022-01-28

    申请号:CN202111597741.9

    申请日:2021-12-24

    Abstract: 本说明书实施例提供了一种建立表征提取模型、表征提取、类型识别的方法和装置。根据该实施例的方法,首先获取包含一个以上样本对的第一训练数据,样本对包括正样本对和负样本对;然后利用第一训练数据训练第一表征提取模型和第二表征提取模型,其中第一表征提取模型用以利用用户的终端侧特征提取用户的终端侧表征向量,第二表征提取模型用以利用用户的服务器侧特征提取用户的服务器侧表征向量;训练目标为最大化正样本对的终端侧表征向量与服务器侧表征向量之间的相似度且最小化负样本对的终端侧表征向量与服务器侧表征向量之间的相似度;再将训练得到的第一表征提取模型部署于终端设备。

    训练标签预测模型的方法、标签预测方法和装置

    公开(公告)号:CN113902256A

    公开(公告)日:2022-01-07

    申请号:CN202111059586.5

    申请日:2021-09-10

    Abstract: 本说明书实施例提供了一种训练标签预测模型的方法、标签预测方法和装置。首先获取样本集合,所述样本集合中的各样本包括对象的特征数据以及对该对象标注的标签;然后从所述样本集合中确定支持集合和查询集合;再利用所述支持集合和查询集合训练标签预测模型;其中,将所述支持集合和查询集合中的查询样本输入所述标签预测模型,由所述标签预测模型利用输入的查询样本与支持集合中各支持样本之间的特征相似度以及各支持样本的标签,预测输入的查询样本的标签;训练目标为最小化预测结果与查询样本被标注的标签之间的差异。

    可信关系的识别方法、装置、存储介质和计算机设备

    公开(公告)号:CN111476668B

    公开(公告)日:2020-10-13

    申请号:CN202010585710.0

    申请日:2020-06-24

    Abstract: 本说明书实施例提供了一种可信关系的识别方法、装置、存储介质和计算机设备。该方法包括:获取用户的行为数据,行为数据包括目标主体的主体特征和多个对象主体的主体特征;根据目标主体的主体特征和多个对象主体的主体特征,利用预先训练的图神经网络模型,生成目标主体对应的第一节点嵌入向量和多个对象主体对应的第二节点嵌入向量;根据第一节点嵌入向量和各个第二节点嵌入向量,生成目标主体与各个对象主体之间的向量距离;判断多个向量距离是否均大于或等于设定阈值;若判断出多个向量距离中至少一个向量距离小于设定阈值,将小于设定阈值的向量距离对应的第一节点嵌入向量和第二节点嵌入向量,确定为可信关系对。

    多方联合训练图神经网络的方法、装置及系统

    公开(公告)号:CN114091651B

    公开(公告)日:2024-05-24

    申请号:CN202111297665.X

    申请日:2021-11-03

    Abstract: 本说明书实施例提供一种保护隐私数据的多方联合训练图神经网络的方法、装置及系统,方法包括:第一方利用图神经网络的第一参数部分,处理样本对象的第一特征部分,得到第一处理结果;利用控制器的目标公钥,对第一处理结果进行同态加密,得到第一加密结果;从第二方接收第二加密结果;基于第一加密结果和第二加密结果,及预设的损失函数,通过同态运算得到第一梯度密文;在第一梯度密文上添加对第一噪声加密的第一噪声密文,得到第一加密加噪数据;将其发送至控制器;从控制器接收对第一加密加噪数据解密后的第一加躁数据,从其中去除第一噪声,得到第一梯度明文;根据第一梯度明文,更新第一参数部分。

    风控场景中消除噪声样本的方法和装置

    公开(公告)号:CN116628572A

    公开(公告)日:2023-08-22

    申请号:CN202310577209.3

    申请日:2023-05-18

    Abstract: 本说明书实施例提供了一种风控场景中消除噪声样本的方法和装置。该方法包括:得到原始训练样本集;该原始训练样本集中包括扩充训练样本以及干净训练样本;将原始训练样本集中的一部分训练样本输入第一去噪模型中,另一部分训练样本输入第二去噪模型中;从输入一个去噪模型的各训练样本中确定出标签相对可靠的训练样本,并利用输入该标签相对可靠的训练样本时得到的该去噪模型的梯度信息更新另一个去噪模型的参数;最终得到的去噪模型对所述原始训练样本集中的训练样本进行分类,利用分类结果更新原始训练样本集中该训练样本的标签,从而得到消除噪声样本后的训练样本集。本说明书实施例能够更好地消除噪声样本。

    一种用户行为状态的确定方法、装置及设备

    公开(公告)号:CN115905624A

    公开(公告)日:2023-04-04

    申请号:CN202211271412.X

    申请日:2022-10-18

    Abstract: 本说明书实施例公开了一种用户行为状态的确定方法、装置及设备,该方法包括:获取目标用户多次执行目标业务所产生的操作行为信息构建的业务时序信息,基于业务时序信息和预先训练的神经网络模型,确定业务时序信息对应的重构系数,训练神经网络模型的过程中通过以下目标函数对神经网络模型中的模型参数进行优化处理:基于由训练样本和训练样本对应的重构系数样本构建的范数,以及重构系数样本对应的熵确定的目标函数;基于业务时序信息对应的重构系数和业务时序信息,确定业务时序信息中不同时间执行的目标业务之间的关联关系;基于业务时序信息中不同时间执行的目标业务之间的关联关系,确定目标用户执行目标业务的行为状态信息。

    可信性判别的方法及系统
    47.
    发明公开

    公开(公告)号:CN115293238A

    公开(公告)日:2022-11-04

    申请号:CN202210793703.9

    申请日:2022-07-07

    Abstract: 本说明书实施例提供了一种可信性判别的方法及系统。其中方法包括:获取表征模型分别利用第一主体和第二主体在时间t2之前预设时长内的行为特征得到的第一主体和第二主体的表征向量;针对所述第一主体确定与该第一主体的表征向量之间的距离满足预设第一条件的第二主体,并将确定出的各第二主体分别与第一主体构成候选关系对;对各候选关系对进行风险评分,选择风险评分满足预设第二条件的候选关系对作为可信关系对,所述可信关系对用以在时间t2+m对包含网络行为的流量进行可信性判别。本申请能够实现基于双主体的准确可信性判别。

    行为预测模型的训练方法、风险行为预测方法和装置

    公开(公告)号:CN115169551A

    公开(公告)日:2022-10-11

    申请号:CN202210757609.8

    申请日:2022-06-30

    Abstract: 本说明书实施例描述了行为预测模型的训练方法、风险行为预测方法和装置。根据实施例的方法,可以在训练行为预测模型时获取样本行为事件的类型标识以及样本行为事件所发生的时间信息。然后将样本行为事件在连续的时间域上进行表征,进而根据在连续时间域上表征后的行为事件表征训练行为预测模型,以对行为预测模型输出的类型标识和时间的预测值进行优化。通过将样本行为事件在连续的时间域上表征,实现了行为事件和其所发生的的时间的关联,使得模型能够充分学习到行为事件和其所发生的时间所呈现出的规律和周期性的特征,从而能够提高风险行为预测的准确性。

    建立表征提取模型、表征提取、类型识别的方法和装置

    公开(公告)号:CN113988225B

    公开(公告)日:2022-05-06

    申请号:CN202111597741.9

    申请日:2021-12-24

    Abstract: 本说明书实施例提供了一种建立表征提取模型、表征提取、类型识别的方法和装置。根据该实施例的方法,首先获取包含一个以上样本对的第一训练数据,样本对包括正样本对和负样本对;然后利用第一训练数据训练第一表征提取模型和第二表征提取模型,其中第一表征提取模型用以利用用户的终端侧特征提取用户的终端侧表征向量,第二表征提取模型用以利用用户的服务器侧特征提取用户的服务器侧表征向量;训练目标为最大化正样本对的终端侧表征向量与服务器侧表征向量之间的相似度且最小化负样本对的终端侧表征向量与服务器侧表征向量之间的相似度;再将训练得到的第一表征提取模型部署于终端设备。

Patent Agency Ranking