-
公开(公告)号:CN112526462B
公开(公告)日:2022-02-22
申请号:CN202011579712.5
申请日:2020-12-28
Applicant: 哈尔滨工业大学(威海)
Abstract: 一种雷达低旁瓣波形设计方法,属于雷达探测技术领域,用以解决现有的雷达波形设计方法稳定性不高、抑制自相关距离旁瓣性能差的问题。本发明采用进化投影算法来设计雷达波形,相比采用现有的波形设计方法,本发明具有更好的波形设计稳健性,避免由于波形恒模导致非凸数学求解稳定差的弊端,且具有更低的相关旁瓣。应用本发明方法,可使常规雷达、MIMO雷达具有更好的检测性能。
-
公开(公告)号:CN106019237B
公开(公告)日:2021-07-30
申请号:CN201610464119.3
申请日:2016-06-23
Applicant: 哈尔滨工业大学(威海)
IPC: G01S7/02 , G06F30/20 , G06F111/04
Abstract: 本发明属于雷达通信技术领域,特别涉及一种兼具多普勒容忍性、低截获概率特性和低相关旁瓣特性的针对运动目标信息获取的雷达LFM复合波形设计方法,该方法通过联合低相关旁瓣波形设计方法和LFM噪声波形设计思路,以相位加权形式构造LFM复合波形数学模型,并引入相关旁瓣模板向量构造相应的目标函数;进而分析相位约束和恒模约束条件,构造迭代谱逼近松弛投影相位修正算法框架,给出LFM复合波形优化输出程序化步骤,采用本发明表述的迭代谱逼近松弛投影相位修正恒模LFM复合波形编码设计思路,可使波形的低相关旁瓣特性、低截获概率等性能均有较大幅度提升,同时该算法效率高、耗时少、鲁棒性佳,更适合LFM复合波形在线设计。
-
公开(公告)号:CN112526462A
公开(公告)日:2021-03-19
申请号:CN202011579712.5
申请日:2020-12-28
Applicant: 哈尔滨工业大学(威海)
Abstract: 一种雷达低旁瓣波形设计方法,属于雷达探测技术领域,用以解决现有的雷达波形设计方法稳定性不高、抑制自相关距离旁瓣性能差的问题。本发明采用进化投影算法来设计雷达波形,相比采用现有的波形设计方法,本发明具有更好的波形设计稳健性,避免由于波形恒模导致非凸数学求解稳定差的弊端,且具有更低的相关旁瓣。应用本发明方法,可使常规雷达、MIMO雷达具有更好的检测性能。
-
公开(公告)号:CN107390199B
公开(公告)日:2019-06-18
申请号:CN201710855364.1
申请日:2017-09-20
Applicant: 哈尔滨工业大学(威海) , 山东船舶技术研究院
IPC: G01S7/41
Abstract: 一种雷达机动目标跟踪波形设计方法,属于雷达通信技术领域,具体涉及雷达机动目标跟踪波形设计方法。本发明首先对机动目标构造运动模型,计算滤波器更新矩阵权值、运动模型的混合输入状态及对应的估计误差协方差矩阵,然后利用线性或非线性滤波算法获得各子模型的局部无偏滤波器估值和目标状态估计误差协方差矩阵,进行复合矩阵更新以获得最优融合状态估计及融合估计误差协方差矩阵,在此基础上获得发射波形旋转参数,利用分数阶傅里叶变换旋转用户设定波形得到新的量测误差椭圆及发射波形,最后进行马尔科夫转移概率矩阵的更新,以达到更好的跟踪精度。本发明解决了机动目标跟踪稳健性不强、准确性低的问题。本发明可运用于雷达通信技术。
-
公开(公告)号:CN119915215A
公开(公告)日:2025-05-02
申请号:CN202510404748.6
申请日:2025-04-02
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供了一种基于探地雷达的沥青厚度智能检测方法、装置及系统,涉及沥青厚度检测技术领域,包括使多通道探地雷达检测模块进行周期性升降运动获取校准数据,建立噪声信号模型;单点测量并采用共中心法测量待测沥青路面的相对介电常数;调整多通道探地雷达检测模块的探地雷达天线高度,连续测量沥青路段雷达数据;基于校准数据和噪声信号模型对沥青路段雷达数据进行校准、去噪和平滑处理,通过动态规划算法跟踪生成最优分界线位置,计算得到路面沥青厚度分布情况。本申请通过多通道探地雷达与升降装置协同工作,共中心点法测量相对介电常数,计算探地雷达天线最佳高度,动态规划算法跟踪生成最优分界线进行自动化处理。
-
公开(公告)号:CN119846561A
公开(公告)日:2025-04-18
申请号:CN202510335967.3
申请日:2025-03-21
Applicant: 哈尔滨工业大学(威海) , 威海天航信息技术有限公司
Abstract: 本发明公开了一种基于多参数融合的车载探地雷达里程触发方法及装置,其属于探地雷达技术领域。本发明包括里程触发机械系统及多传感器里程触发系统,本发明将加速度传感器采集的电压信号和轮速编码器采集的方波脉冲信号经过里程计算模块换算为实时里程数据,数据融合模块通过自适应加权进行初次权重分配,通过不同时刻压力传感器数据实时更新压力修正因子对里程数据进行二次权重分配,再将融合数据通过脉冲生成模块输出具有特定频率变化的方波脉冲信号用于探地雷达触发。本发明可以有效提高系统对复杂路面情况的适应性,为后期雷达数据处理和病害点定位带来极大便利。
-
公开(公告)号:CN118537534A
公开(公告)日:2024-08-23
申请号:CN202410600476.2
申请日:2024-05-15
Applicant: 哈尔滨工业大学(威海)
IPC: G06V10/25 , G06V10/774 , G06V10/82 , G06V20/05 , G06N3/0464 , G06N3/096 , G01S15/89 , G01V8/10 , G01S15/86
Abstract: 本申请属于水下灾害目标检测技术领域,具体为一种基于目标数据集与二次迁移学习的目标检测模型构建方法:创建声学‑光学水下灾害目标检测数据集;采用数据增强方法对声学‑光学水下灾害目标检测数据集进行扩展,同时,使用预训练模型权重在扩展过的声学‑光学水下灾害目标检测数据集随机提取部分形成的数据集上训练YOLOv5模型,将过程中最优权重作为第一阶段权重;采用第一阶段权重在扩展后的声学‑光学水下灾害目标检测数据集上对YOLOv5模型进行二阶段训练,获得水下灾害目标检测模型。本申请使用二次迁移学习和光学‑声学数据集结合构建的模型来检测水下灾害目标,提高了检测效率和准确性,降低现有模型检测水下灾害目标的难度。
-
公开(公告)号:CN118534422A
公开(公告)日:2024-08-23
申请号:CN202410607001.6
申请日:2024-05-16
Applicant: 哈尔滨工业大学(威海) , 青岛万升航控智能科技有限公司
IPC: G01S7/36 , G06F30/20 , G01S13/933 , G06F111/04
Abstract: 本发明公开了一种无人机载雷达近区抗干扰波形设计方法及系统,涉及雷达波形设计技术领域。本发明的技术要点包括:对于无人机载雷达系统,构造基于正交频分复用技术的预编码波形集合;构造波形优化约束条件;构造波形优化目标函数和参考雷达波形;利用MM算法对波形优化目标函数进行转化,并将波形优化约束条件中非凸约束条件转化为凸约束条件;利用标准数值工具迭代求解转化后的波形优化目标函数,获得最优波形序列。本发明避免了常见的低峰均比约束未能充分控制发射天线功率均匀性的问题,防止高功率动态范围波动和低发射功率效率的情况,本发明在符号误码率和平均可实现的速率方面有显著改善,且提升了抗截获性能,具备更低的相关旁瓣水平。
-
公开(公告)号:CN118009942B
公开(公告)日:2024-08-23
申请号:CN202410173553.0
申请日:2024-02-07
Applicant: 哈尔滨工业大学(威海)
IPC: G01B15/06
Abstract: 本发明提供一种转轮式井下形变监测报警装置及报警方法,属于巷道围岩形变监测领域。为解决现有巷道监测方法难以全方位、高效采集数据,妨碍对形变量的全面分析和有效预警,造成巷道围岩系统整体健康状况评估不准确的问题。包括设置在转轮外壁上的至少四个窄波束雷达测距装置,转轮中心处的中心电机,转轮通过固定支架固定在巷道上,固定支架上设有远程通信模块、数据处理单元和控制器;数据处理单元用于对监测数据进行形变分析,并通过远程通信模块发送至接收终端;控制器用于控制中心电机按所设定好的角速度旋转,并控制四个窄波束雷达测距模块的工作顺序及各自的工作时长。可有效且全面地采集巷道墙壁的形变参数,全面分析数据并提供预警服务。
-
公开(公告)号:CN118379801B
公开(公告)日:2024-08-16
申请号:CN202410837739.1
申请日:2024-06-26
Applicant: 哈尔滨工业大学(威海) , 青岛万升航控智能科技有限公司
Abstract: 本发明提供一种面向海面救援的雷视融合人体动作识别系统及方法,属于传感器融合领域。为解决海面救援时对落水人员动作识别精度不足,探测时间长,无法实现对人体动作多维度探测的问题。本发明通过毫米波雷达信号处理获取人体求救动作的雷达时频二值图,通过红外相机图像处理获取人体求救动作的红外帧序列,两种数据经时间配准后在各自搭建的嵌入空间重构模块和嵌入通道重构模块的卷积神经网络中进行识别,根据距离因子的大小调整两种传感器的权重,经过线性加权的决策级融合策略,实现动作的融合识别。借助毫米波雷达和红外相机的优势,可在海雾、夜晚等复杂场景下快速、准确地识别落水人员求救动作,确保海面救援工作的顺利进行。
-
-
-
-
-
-
-
-
-