-
公开(公告)号:CN119380755A
公开(公告)日:2025-01-28
申请号:CN202411962793.5
申请日:2024-12-30
Applicant: 南昌工程学院
IPC: G10L25/51 , G10L25/03 , G10L25/30 , G06F18/23213 , G06F18/2337 , G06N3/04 , G06N3/0499 , G06N3/084 , G06N3/086 , G01R31/12
Abstract: 本发明公开了一种基于改进神经网络的变压器故障诊断方法,该方法针对传统变压器故障诊断存在的效率低下和诊断结果主观性强的问题,提出了一种基于改进算法的故障诊断技术。首先对变压器声纹数据进行预处理,通过模糊聚类C均值聚类算法进一步处理预处理后的声纹特征,对声纹特征进行标注并以此获取数据集。接着构建基于改进河马算法优化的神经网络模型,通过河马算法优化神经网络的参数,提高模型的搜索和收敛性能。本发明不仅提升了故障诊断的效率和准确性,还增强了模型的泛化能力,为变压器的维护和故障预防提供了有力的技术支持。
-
公开(公告)号:CN118656731B
公开(公告)日:2024-11-19
申请号:CN202411066900.6
申请日:2024-08-06
Applicant: 南昌工程学院
IPC: G06F18/2415 , G06N3/047 , G06N3/006 , G01R31/12
Abstract: 本发明公开了一种基于神经网络的变压器局部放电检测方法,包括:S1:采集变压器历史运行时局部放电的信号数据,根据风险类型对信号数据分别进行标记,以此构建数据集,对数据集进行预处理获取特征数据集;S2:构建概率神经网络模型,导入S1中的特征数据集至概率神经网络模型进行训练,在训练过程中,通过苦鱼算法优化概率神经网络模型的平滑因子,获取最优的平滑因子;S3:采集变压器实时运行时局部放电的信号数据并进行预处理,将其导入训练后的概率神经网络模型进行检测,输出变压器实时的局部放电的风险类型。本发明采用改良的苦鱼算法优化概率神经网络的方法,极大地提高了检测的准确性。
-
公开(公告)号:CN117975040A
公开(公告)日:2024-05-03
申请号:CN202410361782.5
申请日:2024-03-28
Applicant: 南昌工程学院 , 国网吉林省电力有限公司电力科学研究院
IPC: G06V10/44 , G06V10/82 , G06N3/0464 , G06V10/80 , G06V10/774
Abstract: 本发明公开了一种基于改进YOLOv5的GIS红外图像识别系统与方法,该系统由红外图像采集装置和GIS红外图像目标检测装置组成;红外图像采集装置采集变电站GIS红外图像,并输入至GIS红外图像目标检测装置;GIS红外图像目标检测装置内含基于改进YOLOv5的GIS红外图像识别模型,用于GIS类别检测;所述基于改进YOLOv5的GIS红外图像识别模型是在YOLOv5的基础上,引入GhostNet网络和SimAM模块进行改进。本发明可实现对于变电站复杂环境下的GIS识别,识别精度高且速度快。
-
公开(公告)号:CN116610911B
公开(公告)日:2023-09-19
申请号:CN202310884271.7
申请日:2023-07-19
Applicant: 南昌工程学院 , 江西博微新技术有限公司
Abstract: 本发明属于数据修复领域,公开了一种基于贝叶斯高斯张量分解模型的用电数据修复方法及系统,收集天气、节假日、星期类型和用电量数据,构建成天气因子、节假日因子和星期因子,根据天气因子、节假日因子和星期因子构建相似度目标函数;使用野马优化算法对相似度目标函数进行寻优,在历史日中查找到与修复日相似度最高的M个相似日;以相似度最高的M个相似日的用电量数据构成三阶张量,将三阶张量输入到贝叶斯高斯张量分解模型中进行数据修复。本发明采用改进的野马优化算法选择相似日,输入贝叶斯高斯张量分解模型中对残缺数据进行修复,提升了修复准确率,以提高数据质量,达到提升预测等行为的精确性。
-
公开(公告)号:CN116526478B
公开(公告)日:2023-09-19
申请号:CN202310800611.3
申请日:2023-07-03
Applicant: 南昌工程学院
IPC: H02J3/00 , H02J3/38 , G06F18/243 , G06F18/214 , G06N3/006 , G06N7/08 , G06N3/045 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了基于改进的蛇群优化算法的短期风电功率预测方法及系统,利用四分位法对风电场异常数据清洗并插补,建立极致梯度提升树分类模型并且利用改进的蛇群优化算法优化极致梯度提升树,对极致梯度提升树分类模型进行训练和测试,并且划分天气类型,根据分类结果构建不同天气下的多维特征矩阵,构建自适应预测模型并且预测转折性天气下的风电功率。本发明使用改进的蛇群优化算法对极致梯度提升树的学习率、树深度、最佳树的个数这三个参数进行优化可以提高极致梯度提升树分类模型的准确率,进而提高自适应预测模型的准确率,解决现有风电功率预测方案在转折性天气时段存在较大误差的问题。
-
公开(公告)号:CN116705065A
公开(公告)日:2023-09-05
申请号:CN202310692879.X
申请日:2023-06-12
Applicant: 南昌工程学院
Inventor: 姚先哲 , 丁贵立 , 康兵 , 许志浩 , 王宗耀 , 刘文轩 , 章彧涵 , 李斌 , 高家通 , 蒋善旗 , 戴永熙 , 杨梓萌 , 徐一舟 , 李雨彤 , 何登旋 , 单惠敏
Abstract: 本发明公开了一种基于LSTM‑BHPSO的变电站声纹故障诊断方法,采集变电站声纹信号,并使用MFCC进行特征提取,得到特征数据集,将特征数据集分为训练集和测试集;构建基于LSTM网络的变电站声纹故障诊断模型;将MFCC提取的特征点数量、批处理样本数、网络层个数、隐含层与全连接层的个数作为粒子的位置使用BHPSO算法进行迭代寻优得到最优初始参数,将最优初始参数输入基于LSTM网络的变电站声纹故障诊断模型;使用训练好的基于LSTM网络的变电站声纹故障诊断模型进行变电站声纹故障诊断。本发明具有较好的处理效率,可以避免局部最优,有利于获得准确的故障诊断结果。
-
公开(公告)号:CN116184141B
公开(公告)日:2023-08-29
申请号:CN202310450336.7
申请日:2023-04-25
Applicant: 南昌工程学院
IPC: G01R31/12 , G06F18/213 , G06F18/2411
Abstract: 本发明公开一种气体绝缘设备故障诊断方法及系统,方法包括:根据GIS设备的声压信号中各个声压片段的频谱构建关于时间矩的Hankel矩阵;替换Hankel矩阵中第(1×1)和(k×k)个元素,并从Hankel矩阵的元素开始的其余元素都放在同一列,选择前n个独立行和前n个独立列,得到修正Hankel矩阵;计算关于时间矩的修正Hankel均矩阵,并对修正Hankel均矩阵进行特征向量变换,得到修正Hankel矩阵的特征值以及特征向量;根据特征值以及GIS设备的声压信号的实际特征值计算随机鞅;若随机鞅大于故障阈值,则基于熵值法确定修正Hankel均矩阵各分量的权重系数。通过故障特征向量学习与精准提取,有效提升了故障检测准确度。
-
公开(公告)号:CN116125235A
公开(公告)日:2023-05-16
申请号:CN202310399312.3
申请日:2023-04-14
Applicant: 南昌工程学院 , 中国电力科学研究院有限公司
IPC: G01R31/12 , G06F18/10 , G06F18/213 , G06F18/24 , G06F18/2411 , G06N20/10 , G06N3/006
Abstract: 本发明属于电力设备故障分析技术领域,公开了一种基于超声信号的GIS局部放电故障诊断方法,将GIS局部放电超声信号用基于广义S变换的瞬态提取变换的时频分析方法变换成反映某一频率在不同时间上变化的瞬时提取广义S变换时频谱,构建瞬时提取广义S变换时频谱数据集;通过局部线性嵌入算法对瞬时提取广义S变换时频谱数据集进行降维,得到低维特征数据集;利用改进的蝴蝶算法对LSSVM的超参进行优化,以所得的低维特征数据集为基础,构造PODSBOA‑LSSVM故障诊断模型,对未知的GIS局部放电超声信号进行诊断。本发明采用群延迟提取瞬时提取广义S变换时频谱,去除了干扰信号,增强了识别精度。
-
公开(公告)号:CN115902508A
公开(公告)日:2023-04-04
申请号:CN202211348268.5
申请日:2022-10-31
Applicant: 国网吉林省电力有限公司电力科学研究院 , 南昌工程学院
Abstract: 本发明涉及一种基于语义分割与拓扑重构的电力设备过热故障快速定位方法。将电力设备按类别标注后,使用连通区域分析实现电力设备的同相识别,计算并判断三相各类电力设备的面积及横坐标是否皆成等差数列,如皆成等差数列,根据将各类电力设备中面积最大相、横坐标最小或最大相,推断出同相的各类电力设备,形成局部电气拓扑图,局部电气拓扑图与变电站主接线图对比,核验局部电气拓扑图中各类电力设备的同相连接关系是否正确;从而实现了电力设备的连接关系拓扑重构,并基于局部电气拓扑图与变电站主接线图实现故障定位。本发明可快速实现同相设备的故障关联与推算,为故障诊断提供预诊依据,便于快速故障定位。
-
公开(公告)号:CN115687952A
公开(公告)日:2023-02-03
申请号:CN202310000630.8
申请日:2023-01-03
Applicant: 南昌工程学院
Abstract: 发明公开了一种基于黎曼流形聚类的配电网线变关系辨识方法及装置,该方法将电压时间序列划分为多个电压时间子序列,每个电压时间子序列的所有点的特征向量组成电压时间子序列的特征矩阵;电压时间序列之间的距离由电压时间子序列之间的平均距离计算;以不同配变的电压时间序列的特征矩阵作为数据集进行黎曼流形聚类;通过对聚类结果的分析以实现错误配变的检测。本发明使用了大数据挖掘中的思想,有效解决了传统辨识方法中存在的校核阈值难以确定以及多特征量校核时的特征量选取困难的问题。
-
-
-
-
-
-
-
-
-