-
公开(公告)号:CN119106338A
公开(公告)日:2024-12-10
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN119106338B
公开(公告)日:2025-03-25
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN119380755A
公开(公告)日:2025-01-28
申请号:CN202411962793.5
申请日:2024-12-30
Applicant: 南昌工程学院
IPC: G10L25/51 , G10L25/03 , G10L25/30 , G06F18/23213 , G06F18/2337 , G06N3/04 , G06N3/0499 , G06N3/084 , G06N3/086 , G01R31/12
Abstract: 本发明公开了一种基于改进神经网络的变压器故障诊断方法,该方法针对传统变压器故障诊断存在的效率低下和诊断结果主观性强的问题,提出了一种基于改进算法的故障诊断技术。首先对变压器声纹数据进行预处理,通过模糊聚类C均值聚类算法进一步处理预处理后的声纹特征,对声纹特征进行标注并以此获取数据集。接着构建基于改进河马算法优化的神经网络模型,通过河马算法优化神经网络的参数,提高模型的搜索和收敛性能。本发明不仅提升了故障诊断的效率和准确性,还增强了模型的泛化能力,为变压器的维护和故障预防提供了有力的技术支持。
-
-