-
公开(公告)号:CN118656731A
公开(公告)日:2024-09-17
申请号:CN202411066900.6
申请日:2024-08-06
Applicant: 南昌工程学院
IPC: G06F18/2415 , G06N3/047 , G06N3/006 , G01R31/12
Abstract: 本发明公开了一种基于神经网络的变压器局部放电检测方法,包括:S1:采集变压器历史运行时局部放电的信号数据,根据风险类型对信号数据分别进行标记,以此构建数据集,对数据集进行预处理获取特征数据集;S2:构建概率神经网络模型,导入S1中的特征数据集至概率神经网络模型进行训练,在训练过程中,通过苦鱼算法优化概率神经网络模型的平滑因子,获取最优的平滑因子;S3:采集变压器实时运行时局部放电的信号数据并进行预处理,将其导入训练后的概率神经网络模型进行检测,输出变压器实时的局部放电的风险类型。本发明采用改良的苦鱼算法优化概率神经网络的方法,极大地提高了检测的准确性。
-
公开(公告)号:CN118656731B
公开(公告)日:2024-11-19
申请号:CN202411066900.6
申请日:2024-08-06
Applicant: 南昌工程学院
IPC: G06F18/2415 , G06N3/047 , G06N3/006 , G01R31/12
Abstract: 本发明公开了一种基于神经网络的变压器局部放电检测方法,包括:S1:采集变压器历史运行时局部放电的信号数据,根据风险类型对信号数据分别进行标记,以此构建数据集,对数据集进行预处理获取特征数据集;S2:构建概率神经网络模型,导入S1中的特征数据集至概率神经网络模型进行训练,在训练过程中,通过苦鱼算法优化概率神经网络模型的平滑因子,获取最优的平滑因子;S3:采集变压器实时运行时局部放电的信号数据并进行预处理,将其导入训练后的概率神经网络模型进行检测,输出变压器实时的局部放电的风险类型。本发明采用改良的苦鱼算法优化概率神经网络的方法,极大地提高了检测的准确性。
-