-
公开(公告)号:CN115689070B
公开(公告)日:2023-12-22
申请号:CN202310000659.6
申请日:2023-01-03
Applicant: 南昌工程学院
Abstract: 本发明涉及一种基于帝王蝶算法优化BP神经网络模型的能源预测方法,该方法针对能源消费总量及其影响因素的数据建立BP神经网络模型;通过归一化函数将所有数据归一化消除量纲影响;并通过帝王蝶算法对确定BP神经网络模型的初始权重、初始阈值;将最终得到的初始权重、初始阈值代回BP神经网络模型对测试集的能源消费总量进行预测。本发明将帝王蝶算法应用到BP神经网络模型中,降低了单一BP神经网络模型预测的随机性,缩小了预测误差范围,也提高了BP神经网络模型的预测精度,其方法相对简单,预测效果更优。
-
公开(公告)号:CN119106338B
公开(公告)日:2025-03-25
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN115687955A
公开(公告)日:2023-02-03
申请号:CN202310000646.9
申请日:2023-01-03
Applicant: 南昌工程学院
IPC: G06F18/23211 , G06F18/213 , G06Q50/06 , H02J13/00
Abstract: 本发明属于电力负荷监测技术领域,公开了一种基于投票表决的居民用户负荷曲线聚类方法及装置,该方法通过集成树拟合实现高维数据降维,采用轮廓系数确定最佳聚类数目;以CH准则确定基准聚类算法,最后通过一致性函数矩阵统一集成聚类结果。本发明可综合各成员聚类算法的优势,在聚类精度、聚类效果、鲁棒性方面具有很大的提升效果,可以精准的识别用户的用能特性。
-
公开(公告)号:CN119106338A
公开(公告)日:2024-12-10
申请号:CN202411595325.9
申请日:2024-11-11
Applicant: 南昌工程学院
IPC: G06F18/241 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/044 , G06N3/006 , G01H17/00 , G06F123/02
Abstract: 本发明公开了一种变压器铁芯松动故障声纹诊断方法,包括如下步骤:利用小波变换将采集到的声纹时序数据转换成声纹特征图谱;建立基于熵权法的传感器动态响应数据融合算法,并根据声纹时序数据的相对重要程度对声纹特征图谱实时融合,得到小波动态融合声纹特征图谱;采用改进冠豪猪优化算法对改进的卷积神经网络进行优化并进行训练;将小波动态融合声纹特征图谱导入至训练后的改进卷积神经网络中进行特征提取与识别,得到最终诊断结果;本发明通过将随机游走策略和柯西变异算子分别引入冠豪猪算法的第一种防御策略和第二种防御策略,可增强算法搜索的周密性,消除局部最优解的消极影响。
-
公开(公告)号:CN119380755A
公开(公告)日:2025-01-28
申请号:CN202411962793.5
申请日:2024-12-30
Applicant: 南昌工程学院
IPC: G10L25/51 , G10L25/03 , G10L25/30 , G06F18/23213 , G06F18/2337 , G06N3/04 , G06N3/0499 , G06N3/084 , G06N3/086 , G01R31/12
Abstract: 本发明公开了一种基于改进神经网络的变压器故障诊断方法,该方法针对传统变压器故障诊断存在的效率低下和诊断结果主观性强的问题,提出了一种基于改进算法的故障诊断技术。首先对变压器声纹数据进行预处理,通过模糊聚类C均值聚类算法进一步处理预处理后的声纹特征,对声纹特征进行标注并以此获取数据集。接着构建基于改进河马算法优化的神经网络模型,通过河马算法优化神经网络的参数,提高模型的搜索和收敛性能。本发明不仅提升了故障诊断的效率和准确性,还增强了模型的泛化能力,为变压器的维护和故障预防提供了有力的技术支持。
-
公开(公告)号:CN115689070A
公开(公告)日:2023-02-03
申请号:CN202310000659.6
申请日:2023-01-03
Applicant: 南昌工程学院
Abstract: 本发明涉及一种基于帝王蝶算法优化BP神经网络模型的能源预测方法,该方法针对能源消费总量及其影响因素的数据建立BP神经网络模型;通过归一化函数将所有数据归一化消除量纲影响;并通过帝王蝶算法对确定BP神经网络模型的初始权重、初始阈值;将最终得到的初始权重、初始阈值代回BP神经网络模型对测试集的能源消费总量进行预测。本发明将帝王蝶算法应用到BP神经网络模型中,降低了单一BP神经网络模型预测的随机性,缩小了预测误差范围,也提高了BP神经网络模型的预测精度,其方法相对简单,预测效果更优。
-
-
-
-
-