一种基于主动指向超静平台的多级协同控制方法

    公开(公告)号:CN111619829A

    公开(公告)日:2020-09-04

    申请号:CN202010393092.X

    申请日:2020-05-11

    Abstract: 一种基于主动指向超静平台的多级协同控制方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。在星体姿控系统+快反镜的两级控制系统的基础上,在航天器星体与载荷之间安装具有指向功能的超静平台,组成由一级星体姿控、二级载荷姿控和三级快摆镜组成的三级控制系统。实现对期望姿态的高精度控制。本发明针对新型航天器平台三级复合系统,提出了基于主动指向超静平台的多级协同控制方法,设计星体一级、载荷二级和快反镜三级系统控制律;在满足系统响应需求的前提下,实现多级多带宽复合控制,解决了星体-载荷-快速反射镜三者之间的协同控制问题。

    航天器自治协同粗精分层主被一体三超控制参数确定方法

    公开(公告)号:CN111605733A

    公开(公告)日:2020-09-01

    申请号:CN202010350519.8

    申请日:2020-04-28

    Abstract: 一种航天器自治协同粗精分层主被一体三超控制参数确定方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。针对具有超高精度、超高稳定度、超敏捷控制的航天器三超控制提供了控制参数设计方法,基于指标分解的方法分别对航天器三超控制系统各控制器参数进行设计,提升了设计效率与控制性能。主要设计思路为:1)首先根据三超控制系统架构,建立星体、载荷、快速反射镜三级控制的控制模型;2)根据三超控制系统模型,推导三级控制的各级控制回路传递函数;3)根据选定的敏感器与执行机构的噪声特性,通过频域分析的方法设计各级控制器参数,使得各级控制回路的功率谱密度满足设计指标,实现航天器的三超控制性能。

    一种控制力矩陀螺动态响应时延特性闭环补偿方法

    公开(公告)号:CN110733672A

    公开(公告)日:2020-01-31

    申请号:CN201910889151.X

    申请日:2019-09-19

    Abstract: 一种控制力矩陀螺动态响应时延特性闭环补偿方法,适用于具有超高精度超高稳定度超敏捷机动控制的领域。航天器敏捷机动加减速时,由于CMG框架角采样存在时延且在一个控制周期内保持不变,使得用于计算操纵律、分配控制力矩的低速框架角与实际框架角相比存在滞后,进而使机动过程中误差变大、机动到位后稳定时间变长。针对此问题,提出了一种控制力矩陀螺动态响应时延特性闭环补偿方法,能够在航天器闭环姿态控制的基础上,实现控制力矩陀螺的时延特性辨识与补偿,从而提升航天器姿态控制精度。

    一种航天器两级姿态控制模拟系统

    公开(公告)号:CN108897239A

    公开(公告)日:2018-11-27

    申请号:CN201810714038.3

    申请日:2018-06-29

    Abstract: 一种航天器两级姿态控制模拟系统,用于验证航天器“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制技术。验证系统包括:星体、载荷模拟器、主动指向平台、星体一级控制回路和载荷模拟器二级控制回路;星体一级控制回路和载荷模拟器二级控制回路均包括:控制单元、执行机构、测量单元;星体一级控制回路和载荷模拟器二级控制回路通过平台连接;主动指向平台为载荷模拟器二级控制回路提供主动控制力;载荷模拟器通过主动指向平台将主动控制力的反作用力传递给星体一级控制回路。本发明构建的航天器两级姿态控制模拟系统可验证三超平台航天器多级复合控制技术以及控制性能指标。

    一种超敏捷卫星区域多点目标任务优化方法及系统

    公开(公告)号:CN108846504A

    公开(公告)日:2018-11-20

    申请号:CN201810514486.9

    申请日:2018-05-25

    Abstract: 一种超敏捷卫星区域多点目标任务优化方法及系统,本发明能够保证对目标点的快速高效筛选,形成优化的区域内多点目标任务集合。在确定的任务执行区间内,采用综合最佳分辨率、最大能源获取能力等因素的加权平均方法确定最佳成像时间点,保证成像任务的最佳质量。为了保证任务冲突问题的高效解决,引入性价比判断原则,进行优先级序,保证高优先级任务的有效执行。在区域内重叠任务的解决,采用了兼顾了两个目标点之间姿态机动角度最小和先可见的任务优先观测的迭代排序方法,有效地保证任务的高效执行。本发明特别适用于面向超敏捷卫星的区域内多点目标成像任务的星上规划,能有高效完成任务筛选,冲突解决等关键问题。

    一种动目标跟瞄的三超控制全物理验证系统及方法

    公开(公告)号:CN108820255A

    公开(公告)日:2018-11-16

    申请号:CN201810634461.2

    申请日:2018-06-20

    Abstract: 本发明提供了一种动目标跟瞄的三超控制全物理验证系统及方法。该系统包括星体姿控模拟系统、主动指向超静平台控制模拟系统、载荷模拟器、动目标模拟组件、光学补偿快反镜控制模拟系统和验证计算单元。星体姿控模拟系统模拟星体姿态;主动指向超静平台控制模拟系统,模拟主动指向超静平台;载荷模拟器,模拟载荷;光学补偿快反镜控制模拟系统产生激光光束,将反射后的激光光束偏转轴进行角度放大后传输至动目标模拟组件靶面上,形成光斑,通过调整光束的偏转角度,控制光斑持续跟踪动目标模拟组件靶面中心点;验证计算单元计算由三级姿态控制确定的动目标方位角,将其与动目标实际方位角作差,得到三级姿态控制确定的目标方位误差。

    一种基于分离式双膜簧的智能挠性作动器

    公开(公告)号:CN108667206A

    公开(公告)日:2018-10-16

    申请号:CN201810461054.6

    申请日:2018-05-15

    CPC classification number: H02K7/10 H02K41/0354

    Abstract: 一种基于分离式双膜簧的智能挠性作动器,包括:柔性铰链(2)、支杆(3)、开槽弹簧安装盖(4)等,上阻尼安装片(19),下阻尼安装片(20),其中音圈电机(12)包括音圈电机动子(21)和音圈电机定子(22)。安装完成后,通过大量程高精度电涡流位移传感器(17)的测量反馈和大行程快响应音圈电机(12)的控制输出,实现智能挠性作动器的振动隔离、扰振抑制和精确指向调节。本发明的智能挠性作动器采用分离式双膜簧并联结构形式,运动行程大,控制精度高,可广泛的应用于航天器超高精度、超高稳定度、超敏捷控制领域。

    一种叠加型混合正弦机动路径规划方法

    公开(公告)号:CN107515611A

    公开(公告)日:2017-12-26

    申请号:CN201710627164.0

    申请日:2017-07-28

    Abstract: 一种叠加型混合正弦机动路径规划方法,根据卫星快速机动任务需求,以执行机构的过零持续时间及过零后最大动态响应频率为约束,设计出因加速度不断变化而产生的多段叠加设计的机动路径角加速度曲线,在实现角加速度从零开始递增、又递减到零、保证角加速度灵活性的前提下,减小了挠性附件对卫星稳定度的影响,充分考虑了执行机构过零时动态性能不足和过零后动态响应带宽有约束的特性,避免了执行机构过零特性及响应带宽约束带来过大的在轨机动角度偏差,缩短机动到位后机动控制调节时间。

Patent Agency Ranking