一种基于目标感知的遥感图像船只小目标检测方法

    公开(公告)号:CN113780152A

    公开(公告)日:2021-12-10

    申请号:CN202111043241.0

    申请日:2021-09-07

    Abstract: 本发明公开一种基于目标感知的遥感图像船只小目标检测方法,基于多任务学习、YOLOv5、特征金字塔、多头注意力、超分辨重建等方法,具体步骤如下:一、读入图像数据并进行预处理;二、构造基于目标感知的多任务深度神经网络;三、训练卷积神经网络,得到静态模型参数;四、利用去除目标感知分支后的训练好的模型进行遥感图像目标检测。本发明通过设计一种新型的基于目标感知的多任务深度学习网络,能够对低分辨率宽幅遥感图像下的船只小目标有更加优秀的检测性能,并保证实时的检测速度。输入为遥感图像,输出为船只小目标的位置信息,自动化程度高,能够大幅度提高效率、准确度并降低成本。

    基于遥感影像的建筑物智能提取方法

    公开(公告)号:CN119445380A

    公开(公告)日:2025-02-14

    申请号:CN202411502090.4

    申请日:2024-10-25

    Abstract: 本发明涉及一种基于遥感影像的建筑物智能提取方法:步骤S1、获取高分辨率数据集;步骤S2、设计基于编码‑解码结构的遥感影像建筑物语义分割网络,包括特征提取骨架网络和语义分割解码器;步骤S3、设计基于生成对抗网络的遥感影像建筑物DSM估计网络,包括DSM生成器和DSM判别器,DSM生成器包括DSM生成器编码器和DSM生成器解码器;步骤S4、设计特征融合与加强模块;步骤S5、设计损失函数;步骤S6、根据高分辨率数据集和损失函数,训练优化遥感影像建筑物智能提取网络;步骤S7、通过训练完成的遥感影像建筑物智能提取网络进行基于遥感影像的建筑物智能提取。本发明的方法解决了DSM获取代价昂贵的问题,有效改善提取遥感影像中的建筑物的性能。

    基于transformer的跨模态融合高光谱图像超分重建方法

    公开(公告)号:CN118628357A

    公开(公告)日:2024-09-10

    申请号:CN202410803466.9

    申请日:2024-06-20

    Abstract: 本发明涉及一种基于transformer的跨模态融合高光谱图像超分重建方法,包括:基于场景匹配的RGB图像和高光谱图像,获得融合token序列;采用随机掩膜机制对视觉transformer的编码器和解码器进行联合训练,完成特征重构;步骤S3、构建基于解码器重构的图像与真值图像的相似度的损失函数,对视觉transformer的编码器和解码器进行优化;利用图像重建模块对优化后的视觉transformer的编码器提取的特征进行超分重建。本发明,降低了高光谱图像超分重建的对于数据强配准的要求,扩展了该技术的应用场景,同时空间分辨率提升后的高光谱数据有利于优化下游任务算法的性能,从增强数据的角度降低模型的设计难度,使高光谱数据能够适配于更多的遥感领域任务。

    基于目标分割与图分类的飞机细粒度识别方法

    公开(公告)号:CN116486265B

    公开(公告)日:2023-12-19

    申请号:CN202310468626.4

    申请日:2023-04-26

    Abstract: 本发明涉及一种基于目标分割与图分类的飞机细粒度识别方法,包括:构建并训练基于Mask R‑CNN的目标定位与分割模型,对遥感图像中的飞机目标进行检测与分割;对分割出的飞机目标掩膜通过轮廓提取和多边形拟合提取轮廓多边形,将轮廓多边形的线段作为节点,将线段的几何特征和线段对应部件的卷积特征作为节点属性,并根据线段间的空间关系构建图结构数据;构建融合几何特征和卷积特征的图卷积神经网络模型;利用所述图结构数据训练所述图卷积神经网络模型,对描述飞机形状特征和部件特征的图结构进行整图分类,实现飞机目标的细粒度识别。通过实施本发明的上述方案,通过综合利(56)对比文件US 2020285944 A1,2020.09.10US 2022343537 A1,2022.10.27瑚敏君 等.基于实例分割模型的建筑物自动提取《.测绘通报》.2020,(第4期),第16-20页.

    基于动态重参数化的遥感图像目标检测方法、设备及介质

    公开(公告)号:CN116416531B

    公开(公告)日:2023-12-19

    申请号:CN202310409310.8

    申请日:2023-04-17

    Abstract: 本发明涉及一种基于动态重参数化的遥感图像目标检测方法、设备及存储介质,基于动态重参数化的遥感图像目标检测方法包括:步骤S1、获取遥感图像及对应的真值标签;步骤S2、基于深度学习网络构建目标检测模型,并完成模型训练;步骤S3、利用步骤S2中的目标检测模型进行动态重参数化拓展,并对拓展后的目标检测模型进行在线训练;步骤S4、重复执行步骤S3,得到优化后的目标检测模型;步骤S5、对优化后的目标检测模型进行微调,利用重参数化方法吸收拓展的增强卷积,得到压缩的目标检测模型;步骤S6、利用压缩后的目标检测模型对遥感图像进行检测。本发明,解决了遥感图像目标检测任务中主干特征提取网络因结构参数设计不当而导致性能不足的问题。

Patent Agency Ranking