-
公开(公告)号:CN113889261A
公开(公告)日:2022-01-04
申请号:CN202111113534.1
申请日:2021-09-23
Applicant: 之江实验室
Abstract: 本发明公开了一种基于病理特征辅助的PET/CT自动肺癌诊断分类模型训练方法,属于医学影像领域。该方法通过对病理图像的分类网络进行训练,优先得到一组较好的病理分类网络模型参数;通过该组参数获取病理图像的特征信息,来对PET/CT影像分类网络的特征提取进行指导,以提高PET/CT影像分类网络的精度,有利于基于PET/CT影像的早期肺癌诊断分类的推广应用,为临床医生的诊断以及后续随访提供帮助。通过本发明,可在后续不进行有创的病理检查之前,仅通过无创的PET/CT影像就可达到与病理诊断结果相接近的更准确的肺癌诊断分类结果,可以有效的提高临床医生的诊断效率,减少病患的创伤。
-
公开(公告)号:CN113516658B
公开(公告)日:2021-12-17
申请号:CN202111073596.4
申请日:2021-09-14
Applicant: 之江实验室
Abstract: 本发明公开了一种PET三维图像左心室自动转向及分割的方法,通过构建和训练包括由卷积模块、多个残差‑卷积模块和下采样模块组成的编码器、空间变换网络、包含多个上采样模块及残差‑卷积模块的解码器以及介于编码器与解码器之间的跳跃连接的PET三维图像左心室自动转向及分割模型,将常规视图A作为模型输入,利用此模型实现将图像自动旋转至临床标准视图并基于标准视图得到此视图中的左心室结构分割结果。本发明使用多任务学习的深度学习网络提取图像的位置特征和语义特征,实现不同角度到标准视图的自动转向、心脏定位及左心室的结构分割,一站式处理的操作减少了手动转向、分割的复杂性和人为误差,提高了图像操作的便捷和准确性。
-
公开(公告)号:CN113256753B
公开(公告)日:2021-10-29
申请号:CN202110732417.7
申请日:2021-06-30
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多任务学习约束的PET图像感兴趣区域增强重建方法,该方法先获取PET原始数据在图像域的反投影图像,设计重建主任务为利用三维深度卷积神经网络建立反投影图像与PET重建图像之间的映射。设计新增辅助任务一从反投影图像中预测与PET重建图像具有相同解剖结构的电子计算机断层扫描(CT)图像,从而利用高分辨率CT图像的局部平滑信息降低PET重建图像中的噪声。设计新增任务二实现区分反投影图像中的感兴趣区域与背景区域,在重建过程中对感兴趣区域进行增强重建,降低感兴趣区域由平滑导致的定量误差,提高PET重建精度。
-
公开(公告)号:CN113506296A
公开(公告)日:2021-10-15
申请号:CN202111061904.1
申请日:2021-09-10
Applicant: 之江实验室
Abstract: 本发明公开了一种基于先验知识CT亚区影像组学的慢阻肺诊断装置,属于医学影像领域。该诊断装置包括:基于先验知识的亚区划分模块,用于根据肺内部CT值将患者CT肺部图像划分为三个亚区,其中,亚区一的肺内部CT值的范围为(‑1024,‑950)、亚区二的肺内部CT值的范围为(‑190,110)、亚区三的肺内部CT值的范围为(‑950,‑190);特征提取模块,用于分别提取三个亚区的影像组学特征;并获取亚区一的LAA‑950I特征;分类模块,用于根据提取的特征区分病人是否患有慢性阻塞性肺疾病。本发明装置通过划分亚区,分别提取不同结构的特征,对提高慢阻肺的诊断效率有着更加积极的作用。
-
公开(公告)号:CN113491529A
公开(公告)日:2021-10-12
申请号:CN202111054080.5
申请日:2021-09-09
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种无伴随CT辐射的单床PET延迟成像方法,首先利用一能将PET BP图像转换成更接近于真实PET图像的Pseudo PET图像的图像重建网络,将正常扫描和延迟扫描得到的PET BP图像转换成Pseudo PET图像,然后利用一CT图像生成网络,输入包含正常扫描的Pseudo PET图像和CT图像,以及延迟扫描的Pseudo PET图像,输出获得正常扫描和延迟扫描间的变形场和延迟扫描时刻的CT图像,该CT图像最后用于延迟扫描PET图像重建中的衰减校正,得到SUV定量准确的PET图像并用于肿瘤检测。本发明的方法能消除延迟扫描中病人接受的CT辐射,减轻病人生理和心理上的压力,推动PET延迟成像的应用。
-
公开(公告)号:CN112465824B
公开(公告)日:2021-08-03
申请号:CN202110121469.0
申请日:2021-01-28
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于PET/CT图像亚区影像组学特征的肺腺鳞癌诊断装置,属于医学影像领域。该诊断装置包括:体素三维特征提取模块,用于提取PET/CT图像中肺肿瘤每个体素在一个邻域内的CT局部主梯度角特征值、该体素的CT值、PET值,并组成该体素的三维特征向量;特征聚类模块,用于对得到的每个体素的三维特征向量进行聚类,获取肿瘤亚区分区;radiomics影像组学特征提取模块,用于对每个肿瘤亚区分区提取radiomics影像组学特征;分类模块,用于根据提取的radiomics影像组学特征区分肿瘤是肺鳞癌还是肺腺癌。本发明诊断装置更好地考虑肿瘤内部的异质性,通过提取更加有效的影像组学特征,有效提高肿瘤诊断的准确率。
-
公开(公告)号:CN111325686B
公开(公告)日:2021-03-30
申请号:CN202010087761.0
申请日:2020-02-11
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于深度学习的低剂量PET三维重建方法,该方法包括将低剂量PET原始数据无损反投影至图像域,选取适当的三维深度神经网络结构以拟合低剂量PET反投影到标准剂量PET图像之间的映射,通过训练样本学习并固定网络参数后,实现从低剂量PET原始数据出发的PET图像三维重建,以获取比传统重建算法与图像域降噪处理噪声更低,分辨率更高的低剂量PET重建图像。
-
公开(公告)号:CN111340768B
公开(公告)日:2021-03-09
申请号:CN202010109082.9
申请日:2020-02-21
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于PET/CT智能诊断系统的多中心效应补偿方法,属于医学影像领域。该方法包括:基于一种关于加性和乘性多中心效应参数的位置尺度模型,对训练中心A和测试中心B的数据使用非参数化的数学方法,估测出测试中心B相对于训练中心A的多中心效应参数,并使用该参数补偿测试中心B的数据,以消除测试中心B与训练中心A之间的多中心效应。通过本发明,可补偿训练中心A与测试中心B之间的多中心效应,使得测试中心B的数据在补偿后可用于训练中心A所训练的模型之中,间接地提高了模型的泛化能力。
-
公开(公告)号:CN114399634B
公开(公告)日:2024-05-17
申请号:CN202210267031.8
申请日:2022-03-18
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/44 , G06V10/774 , G06V10/82 , G06V10/80 , G06N3/0895 , G06N3/096
Abstract: 本发明公开了一种基于弱监督学习的三维图像分类方法、系统、设备及介质,本发明采用多示例学习,使用具体切片标签的数据集进行网络训练,采用迁移学习来进行三维图像的特征提取,随后构建一种基于双阶段注意力的多示例学习分类网络,实现了三维图像的快速准确分类。本发明采用一种弱监督策略,无需大量标注的数据集,减少了数据收集与前期处理的工作量,同时提出的基于双阶段注意力的分类网络,相比于其它深度学习分类方法,大幅的提升了分类速度与分类准确率,且具有更高的适应性和鲁棒性,具有更高的实用性。
-
公开(公告)号:CN117437152A
公开(公告)日:2024-01-23
申请号:CN202311764922.5
申请日:2023-12-21
Applicant: 之江实验室
Abstract: 本发明涉及一种基于扩散模型的PET迭代重建方法及系统,主要解决现有PET重建系统中噪声干扰大、成像质量低的问题。本发明将扩散模型引入到迭代重建的过程中,在每次迭代重建时,将输入图像和对应的正投图像拼接输入至训练好的扩散模型进行逐步去噪,得到去噪后的输入图像;基于去噪后的输入图像重建获得输出图像;本发明通过利用扩散模型对PET弦图数据进行降噪,降低了原始信号中的噪声干扰,提高了数据质量;通过在原有的迭代重建步骤中引入扩散模型降噪单元来优化重建过程,进一步提高了重建图像的成像质量。与现有技术相比,本发明采用了基于扩散模型的迭代重建方法,能够有效地降低噪声干扰,提高图像成像质量,具有广泛的应用前景。
-
-
-
-
-
-
-
-
-