-
公开(公告)号:CN111325686A
公开(公告)日:2020-06-23
申请号:CN202010087761.0
申请日:2020-02-11
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于深度学习的低剂量PET三维重建方法,该方法包括将低剂量PET原始数据无损反投影至图像域,选取适当的三维深度神经网络结构以拟合低剂量PET反投影到标准剂量PET图像之间的映射,通过训练样本学习并固定网络参数后,实现从低剂量PET原始数据出发的PET图像三维重建,以获取比传统重建算法与图像域降噪处理噪声更低,分辨率更高的低剂量PET重建图像。
-
公开(公告)号:CN112802073B
公开(公告)日:2021-07-06
申请号:CN202110376958.0
申请日:2021-04-08
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于图像数据和点云数据的融合配准方法,该方法首先通过图像分割获得组织器官的边界点云或通过特征提取得到图像内的特征点云,将图像数据和点云数据输入设计好的融合配准模型中,获得配准好的图像和点云数据以及变形场。所述融合配准模型包含图像配准网络和点云配准网络,训练时,损失函数由图像距离项、点云距离项、约束图像变形场和点云变形场的正则化项以及图像变形场和点云变形场的一致性约束项组成。本发明的方法能提高图像配准中边界保持的能力,在配准前获得细小结构点云信息时,该方法还能改善因细小结构隐藏在图像背景而发生误匹配的问题。
-
公开(公告)号:CN112802073A
公开(公告)日:2021-05-14
申请号:CN202110376958.0
申请日:2021-04-08
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于图像数据和点云数据的融合配准方法,该方法首先通过图像分割获得组织器官的边界点云或通过特征提取得到图像内的特征点云,将图像数据和点云数据输入设计好的融合配准模型中,获得配准好的图像和点云数据以及变形场。所述融合配准模型包含图像配准网络和点云配准网络,训练时,损失函数由图像距离项、点云距离项、约束图像变形场和点云变形场的正则化项以及图像变形场和点云变形场的一致性约束项组成。本发明的方法能提高图像配准中边界保持的能力,在配准前获得细小结构点云信息时,该方法还能改善因细小结构隐藏在图像背景而发生误匹配的问题。
-
公开(公告)号:CN112288041A
公开(公告)日:2021-01-29
申请号:CN202011477932.7
申请日:2020-12-15
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种多模态深度神经网络的特征融合方法,在多模态深度三维CNN里,通过在深度学习特征域上,利用压缩激励(squeeze and excitation,S&E)模块,可获得关于模态之间的通道注意力掩膜,即在所有模态中,给予那些对于任务目标有着显著帮助的通道更大的关注,从而显式地建立了多模态三维深度特征图在通道上的权重分布;随后,利用四维卷积和Sigmoid激活函数计算,可获得关于模态之间的空间注意力掩膜,即在每个模态的三维特征图中,空间中哪些位置需要给予更大的关注,从而显式地建立了多模态三维深度特征图在空间上的相关性,对模态、通道、空间中具有重要信息的位置给予更大的关注,从而提高多模态智能诊断系统的诊断效能。
-
公开(公告)号:CN111340768A
公开(公告)日:2020-06-26
申请号:CN202010109082.9
申请日:2020-02-21
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于PET/CT智能诊断系统的多中心效应补偿方法,属于医学影像领域。该方法包括:基于一种关于加性和乘性多中心效应参数的位置尺度模型,对训练中心A和测试中心B的数据使用非参数化的数学方法,估测出测试中心B相对于训练中心A的多中心效应参数,并使用该参数补偿测试中心B的数据,以消除测试中心B与训练中心A之间的多中心效应。通过本发明,可补偿训练中心A与测试中心B之间的多中心效应,使得测试中心B的数据在补偿后可用于训练中心A所训练的模型之中,间接地提高了模型的泛化能力。
-
公开(公告)号:CN113491529B
公开(公告)日:2021-12-17
申请号:CN202111054080.5
申请日:2021-09-09
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种无伴随CT辐射的单床PET延迟成像方法,首先利用一能将PET BP图像转换成更接近于真实PET图像的Pseudo PET图像的图像重建网络,将正常扫描和延迟扫描得到的PET BP图像转换成Pseudo PET图像,然后利用一CT图像生成网络,输入包含正常扫描的Pseudo PET图像和CT图像,以及延迟扫描的Pseudo PET图像,输出获得正常扫描和延迟扫描间的变形场和延迟扫描时刻的CT图像,该CT图像最后用于延迟扫描PET图像重建中的衰减校正,得到SUV定量准确的PET图像并用于肿瘤检测。本发明的方法能消除延迟扫描中病人接受的CT辐射,减轻病人生理和心理上的压力,推动PET延迟成像的应用。
-
公开(公告)号:CN112288041B
公开(公告)日:2021-03-30
申请号:CN202011477932.7
申请日:2020-12-15
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种多模态深度神经网络的特征融合方法,在多模态深度三维CNN里,通过在深度学习特征域上,利用压缩激励(squeeze and excitation,S&E)模块,可获得关于模态之间的通道注意力掩膜,即在所有模态中,给予那些对于任务目标有着显著帮助的通道更大的关注,从而显式地建立了多模态三维深度特征图在通道上的权重分布;随后,利用四维卷积和Sigmoid激活函数计算,可获得关于模态之间的空间注意力掩膜,即在每个模态的三维特征图中,空间中哪些位置需要给予更大的关注,从而显式地建立了多模态三维深度特征图在空间上的相关性,对模态、通道、空间中具有重要信息的位置给予更大的关注,从而提高多模态智能诊断系统的诊断效能。
-
公开(公告)号:CN113491529A
公开(公告)日:2021-10-12
申请号:CN202111054080.5
申请日:2021-09-09
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种无伴随CT辐射的单床PET延迟成像方法,首先利用一能将PET BP图像转换成更接近于真实PET图像的Pseudo PET图像的图像重建网络,将正常扫描和延迟扫描得到的PET BP图像转换成Pseudo PET图像,然后利用一CT图像生成网络,输入包含正常扫描的Pseudo PET图像和CT图像,以及延迟扫描的Pseudo PET图像,输出获得正常扫描和延迟扫描间的变形场和延迟扫描时刻的CT图像,该CT图像最后用于延迟扫描PET图像重建中的衰减校正,得到SUV定量准确的PET图像并用于肿瘤检测。本发明的方法能消除延迟扫描中病人接受的CT辐射,减轻病人生理和心理上的压力,推动PET延迟成像的应用。
-
公开(公告)号:CN111325686B
公开(公告)日:2021-03-30
申请号:CN202010087761.0
申请日:2020-02-11
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于深度学习的低剂量PET三维重建方法,该方法包括将低剂量PET原始数据无损反投影至图像域,选取适当的三维深度神经网络结构以拟合低剂量PET反投影到标准剂量PET图像之间的映射,通过训练样本学习并固定网络参数后,实现从低剂量PET原始数据出发的PET图像三维重建,以获取比传统重建算法与图像域降噪处理噪声更低,分辨率更高的低剂量PET重建图像。
-
公开(公告)号:CN111340768B
公开(公告)日:2021-03-09
申请号:CN202010109082.9
申请日:2020-02-21
Applicant: 之江实验室 , 明峰医疗系统股份有限公司
Abstract: 本发明公开了一种基于PET/CT智能诊断系统的多中心效应补偿方法,属于医学影像领域。该方法包括:基于一种关于加性和乘性多中心效应参数的位置尺度模型,对训练中心A和测试中心B的数据使用非参数化的数学方法,估测出测试中心B相对于训练中心A的多中心效应参数,并使用该参数补偿测试中心B的数据,以消除测试中心B与训练中心A之间的多中心效应。通过本发明,可补偿训练中心A与测试中心B之间的多中心效应,使得测试中心B的数据在补偿后可用于训练中心A所训练的模型之中,间接地提高了模型的泛化能力。
-
-
-
-
-
-
-
-
-